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The Minimum Rank of Buds

Student : Po-Yu Hsu Advisor @ Dr. Chih-Wen Weng
Department of Applied Mathematics

National Chiao Tung University

Hsinchu 300, Taiwan, R.O.C.

abstract

For a simple graph G of order n with vertex set [n] = {1,2,--- ,n}, an n x n real
symmetric matrix A, whose 7j-th entry is not zero if and only if there is an edge
joined ¢ and j in G, is said to be associated with G. The minimum rank of G is
defined to be the smallest possible rank over all symmetric real matrices associated
with G. A bud based on [n —m] is a graph G with vertex set V(G) = [n] satisfying
the following axioms:

1. The subgraph of G induced on [n — m] is a cycle C,_,,, and the subgraph
induced on [n] \ [n — m| has no edge.

2. The cycle C,,_,, can be parted into m disjoints paths, and the length of these
paths are at least 2. For all vertex v in [n]\[n—m], v has at least three neighbors
in the same path. Any two vertices in [n] \ [n — m] are not connected to the
same path.

In the thesis we will show that a bud based on [n —m| has minimum rank n—m — 2.

Keywords: Graph, Minimum rank, Bud.
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Chapter 1

Introduction

Many mathematical theories have their combinatorial realizations and vice versa,
and the study of matrices associated with a graph G gives a connection between
Graph Theory and Linear Algebra. In this thesis, ranks of matrices associated with
graphs and their combinatorial meaning are investigated.

All graphs considered in this thesis are simple and connected. For a graph
G of order n, we use E(G) as its edge set and V(G) as its vertex set, usually
V(G) = [n] ={1,2,...,n}. For an n x n real symmetric matrix A, I'(A) represents
the graph such that ij € E(I'(A)) if and only if the ij-th entry of A is not zero,
indicating that the matrix A is associated with I'(A). The minimum rank of a graph

G, denoted by m(G), is defined to be the integer
m(G) = min{rank(A) : I'(A) = G},

where the minimum is taken over all n X n symmetric matrices A.

The minimum rank of G is related to the maxzimum nullity of GG, denoted by
M (G) = max{nullity(A4) : ['(A) = G}.

It is well-known that m(G) + M(G) = n for all graphs. Since I'(A) = I'(A + M) =

G, M(G) is also the maximum multiplicity among the possible multiplicities of



eigenvalues of all matrices associated with G.

The number m(G) also has combinatorial meanings. Ping-Hong Wei and Chih-
Wen Weng|[8] showed that if G is a tree, that is, a connected graph satisfies |V (G)|—
1 = |E(G)|, then |E(G)|—m(G) is equal to the minimum size of edge subset S whose
deletion will yield a graph with each vertex of degree 1 or 2 . The AIM Minimum
Rank - Special Graphs Work Group|l] defined Initial configuration, color-change

rule, and zero-forcing set of a graph G as described below :

1. Initial configuration
The vertex set V(G) of G is partitioned into two classes, and these two classes

are colored black and white.

2. Color-change rule
If w is a black vertex of G, and v is the unique white neighbor of u, then the

color of v is changed to be black.

3. Zero-forcing set
A subset S C V(@) is a zero-forcing set if an all-black coloring is obtained
from the initial configuration with S colored black followed by a sequence of

color-change rules.

The minimum size of a zero-forcing set of G is denoted by Z(G). Note that
M(G) < 2(G) [1].

We will compute the minimum rank of a class of graphs which are obtained by
adding a vertex and some edges to a cycle C),_;. We check some minimum ranks of
these graphs and give two conjectures. In the end of the thesis, we define a class of
graphs; called buds based on [n —m] of order n, and show that such a graph G has
the minimum rank n —m — 2, and M(G) = Z(G) = m + 2.

The thesis is organized as follows. In Chapter 2, we introduce some notations
and operations for graphs and matrices used in the thesis. In Chapter 3, we in-

troduces well-known theorems and propositions in which the relation of minimum
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rank between a graph and its subgraph is investigated. Also the relation between
the minimum size of zero-forcing set and the maximum nullity is introduced there.
There are two parts in Chapter 4. In the first part, we study the changing of mini-
mum ranks when adding a vertex to a cycle C,,_1, and give two conjectures. In the
second part, we compute the minimum rank and the minimum size of zero-forcing
sets of a bud, and show that its maximum nullity is equal to the minimum size of

its zero-forcing sets.



Chapter 2

Preliminaries

In this Chapter, we define notations and operations for graphs and matrices

which we will use in this thesis.

2.1 Graphs

We consider simple and connected graphs in this thesis. For a graph G, we use
E(G) as its edge set and V(G) as its vertex set, usually V(G) = [n] = {1, 2,...,n}.

The following table defines these three graphs K, P,, C,, with vertex set [n].

Graph Notation Edge set

Complete graph K, {ijfl <i<j<n}
Path P, {ii+1)]1<i<n-1}
Cycle Cy, {ii+ D)1 <i<n—-1}U{ln}

Let z,y € V(G). We use the following graph operations:

1. & ~ y means that x is a neighbor of y.



2. G1(z) denotes the set of the neighbors of vertex = € G.
3. G — z denotes the induced subgraph of G with vertex set V(G) — {z}.

4. |G| denotes the order of graph G.

2.2 Matrices

We use the following notation with an n x n matrix A, a column vector x € R",

and subsets «, 8 for N.
1. {e1,e,...,e,} is the standard basis of R™.
2. supp(x):= {i € N| the i-th entry of x is not zero }.
3. C;(A) is the i-th column of A.

4. A(«|f) means the submatrix formed by deleting rows in « and columns in f.

A(a) = A(aa).

5. Ala|fB] means the submatrix formed by rows in « and columns in 5. Ala] =

Alalal.

2.3 Matrices associated with graph G

Recall that for an n x n real symmetric matrix A, I'(A) represents the graph G
such that ij € E(I'(A)) if and only if the ij-th entry of A is not zero. The matrix

A is said to be associated with G if I'(4) = G.



Example 2.1. The 4 x 4 matrix A is associated with I'(A).

1 1/5 -1 0
['(A):
15 0 1 0
A= 1
-1 1 -4 2
0 0o 2 0

Note that the diagonal entries do not need to be 0.



Chapter 3

Known Results

Known theorems and propositions are introduced in this chapter. The relation of
minimum rank between a graph and its subgraph is investigated. Also the relation
between the minimum size of zero-forcing set and the maximum nullity of a graph

are introduced here.
Lemma 3.1. If H is an induced subgraph of G, then we have m(H) < m(G).

Proof. For any matrix A with I'(A) = G, the submatrix AV (H)|] = A[V(H)|V(H)]
is associated with H. Thus rank(A[V (H)]) <rank(A). This implies m(H) < m(G).
[

Theorem 3.2. [4, Theorem 2.8] Let A be an n x n real symmetric matrix. Then
the following (7)-(i7) are equivalent.

(¢) rank(A + D) > n — 1 for any diagonal matrix D.



Example 3.3. The following matrix P satisfies ['(P) = P,, and rank(P) = n — 2.

} 1 d
12 1
P = 1
2 1
0 1 1

Theorem 3.2 and Example 3.3 show that P, is the unique graph with minimum
rank n — 1 among all graphs of order n. Now we can determine the minimum rank

of graphs with order n, which has an induced subgraph P,_;.

Lemma 3.4. If a graph G of order n is not a path and contains an induced subgraph

P, 4, then m(G) =n — 2.

Proof. Since P,_; is an induced subgraph of G, by Lemma 3.1 we have m(G) >
m(P,—1) = n — 2. From Theorem 3.2, because G is not a path of orde n, we know
that m(G) < n — 2. Thus m(G) =n — 2. O
Lemma 3.5. The minimum rank of C), is n — 2.

Proof. 1t is immediately from Lemma 3.4. O]

Example 3.6. The matrix A; = (a;;) defined below satisfies I'(A4;) = C; with
rank(A;) =1t — 2.

2, ifi=jandi,jé¢{l,t—1,1t}
1, ifi=j,ij€e{lt—1}
t—2,  ifi=j=t

Clij:

(=11 (i) = (1,1) or (i,5) = (¢, 1);

0, otherwise.



11 (—1)t1
1 2 1
1
At -
2 1
1 1 1
(—1)! 1 t—2

Proposition 3.7. For a cycle C,,, the set of any two adjacent vertices is a zero-

forcing set.

Proof. These two adjacent vertices form a black path. Once we change the white
neighbor of the endpoint of the black path, there forms a new black path. Finally,
all vertices are all black. Thus the set of any two adjacent vertices is a zero-forcing

set. ]

Here we introduce the relation between the minimum size Z(G) of zero-forcing

set and the maximum nullity M (G) of a graph G.

Proposition 3.8. [1, Proposition 2.4] Let G' be any graph. Then M(G) < Z(G).
O

Also there are some graphs with Z(G) = M(G).
Proposition 3.9. [1, Proposition 4.3] If |G| < 6, then M(G) = Z(G). O

Example 3.10. The following graph G with it’s associated matrix A as an example

for Proposition 3.9 has m(G) = rank(A) = 2, and Z(G) = M(G) = 3.



Theorem 3.11. [1, Proposition 4.10] For each of the following families of graphs, Z(G) =
M(G)

1 Any graph G such that |G| < 6.
2 K,, P, C,.
3 Any tree T.

4 All the graphs listed in Table 1[1, Page 1630]. O

10



Chapter 4

Main Results

There are two parts in this chapter. In the first part, we study the changing
of minimum ranks when adding a vertex to a cycle C),_;. In the second part,
we compute minimum ranks and the minimum sizes of zero-forcing set of a class of
graphs, called buds, and show that their maximum nullities is equal to the minimum

sizes of zero-forcing set of buds.

4.1 Add a vertex to C,,_;

Let n be a vertex adding to the cycle C),_; in this section.

Proposition 4.1. Suppose that there is exactly one edge which joins n to some
vertex © € C,_;. Then the minimum rank of the new graph G’ is n — 2, and

M(G') = Z(G") = 2.

Proof. Since G’ contains an induced subgraph P,_1, by deleting a neighbor of x, we
know that m(G’) > m(P,—1) = n — 2. On the other hand, G’ is not a path of order
n, so m(G') < n — 1. Thus the minimum rank of G’ is n — 2 and the maximum
nullity is 2. By Proposition 3.8, M(G’) < Z(G"), we only need to claim that there is

a zero-forcing set of G’ with size 2. Let y be a neighbor of z in a clockwise direction.

11



Consider the set {z,y} colored in black. From y in a clockwise direction, a white
vertex can be changed to a black vertex at one time. When all vertices in C,,_; are
all black, n is the exactly one white neighbor of =, then n can change to black. Thus

the set {x,y} is a zero-forcing set of G’ with size 2. O

Proposition 4.2. Let z,y € V(C,_1) and = ~ y. If there are exactly two edges
incident on n such that n ~ x and n ~ y, then the minimum rank of this new graph

G"isn—2,and M(G") = Z(G") = 2.

Proof. By deleting vertex y, we know that P, ; is an induced subgraph of G”.
Thus m(G") > m(P,—1) = n — 2. Because G” is not a path of order n, we have
m(G") < n — 1. Therefore, the minimum rank of G is n — 2, and the maximum
nullity is 2. By Proposition 3.8, M(G") < Z(G"), we have to claim that there is a
zero-forcing set of G” with size 2. Consider the set {x,n} colored in black, y is the
only one white neighbor of n, so y can change to black. For other white vertices,
using the same argument as the proof in Proposition 3.7 can color all white vertices

to black. Thus the set {z,n} is a zero-forcing set of G” with size 2. O

Let G3 be a graph of order n. (G5 is obtained by adding a vertex n and two edges
to a cycle C,_1, and the vertex n is adjacent to two vertices which have distance 2.
Before we discuss the situations of GG3, we define four types n x n matrices W, XY, Z

as follows. According to the result of n mod 4, these matrices can be associated

1. Whenn =4k + 1,k € N,

1, ifoneof 4,5 is 1, and the other isn — 1 or n ;

1, if (i,7) = (3,n)or (i,7) = (n,3) ;

1, ifli—j|=1Vij<n;

0, otherwise.

12



0 1 1 1
1 0 1 0
1 1
W =
1
1 1 0 0
1 0 1 0 0

2. When7{124k3—|—2,k€N,

1, if one of 7,7 is 1, and the other isn — 1 or n ;
1, if (i,7) = (3,n) or (i,5) = (n,3) ;

1, if|i—jl=1Vi,j<n-—1;

1, ifi=yg,i,5€{l,n—2n—1};

-1, (,j)=Mm—-2,n—1)or (i,j)=(n—1,n—-2);

\ 0, otherwise.
_ 1 1 1 1 -

1 0 1 0

1 1

X = 0 1
1 1 -1

1 -1 1 0
1 0 1 0 0

13



3. When n =4k + 3,k € N,
(

Yij = S

if one of 7,7 is 1, and the other isn — 1 or n ;
if (4,7) = (3,n) or (i,7) = (n,3) ;
if|i—jl=1LVi,j<n—-1;

(t,7) =(n—=2,n—1) or (4,j) = (n—1,n—2);

otherwise.
0 1 1 1 -
1 1 0

1 1

1
1 -1

1 -1 0 0
1 0 1 0 0

4. When n =4k + 4,k € N,
(

if one of 7,7 is 1, and the other isn — 1 or n ;
if (i,7) = 3,n) or (i,j) = (n,3) ;

if i —jl=1,Vi,j<n—1lexcepti+j=9;
ifi=y,i,5€{l,4,n—1};
(,j))=(mn—=2,n—1)or (i,j) =(n—1,n—2) ;
(1,5) = (4,5) or (i,5) = (5,4) ;

otherwise.

14



_ 1 1 1 1 _
1 0 1 0
1 0 1 1
1 1 —1
-1 0 1
7 =
1
1
1 0 -1
1 —1 1 0
1 0 1 0 0

Lemma 4.3. The rank of the above-mentioned four n x n matrices W, X, Y, Z are

at most n — 3.

Proof. For each W, XY, Z, express its 3-th, (n — 1)-th and n-th columns as linear
combination of other columns.

(1) For W,

Cg(W) —=E€9 + €4 + €n

2k 2k
:€2+64+6n+§ 621‘—5 €2;
i=3 i=3
2k—1

2k
=€y + €, 1+€,+ E €9; — €9;
=2 =3

k-1 -1
=C1(w) + Z Caip1(W) — Z Cuirs(W),
=1 =1

15



Cn_1<W) =€ + €n—2

2k—2 2%k—2
=e1 + e4—1 + E €2i41 — E €2i+1
i=1 i=1
2%—1 2k—2

= Z €2i+1 — Z €2i+1
= Z Cuir2(W) — Z Cu(W
i=0 i=1

and
Cn(W) =e]+e3 = CQ(W)
(2) For X,
CS(X) =€y +eq4 + ey
n—4 n—4
:eg+e4+en+Zei —Zei
i=5 i=5
4k—2
=€+ erteph1t+€E —€ —€3—€Ch1+ Zei_
i=3
k—1
=C1(X) = Co(X) + ) (Cri(X) + Cuipa(X))—
i=1
k—1
(Cuira(X) + Cuirs(X)) + Cra(X),
i=1
Crn1(X) =e1 —ep_o+€n1
2%k—1 2%k—1
=e1 + Z €2i41 — Z €2i+1 — €4k T €n_1
i=1 i=1

2%k—1 2%—2
= Z €2i+1 — Z €2i+1 — €4k—1 — €4k + €1
= Z Cuiya(X Z Cii(X) — Cap(X),

i=0

and

On<X)—€1+63 OQ( )

16

4k—2
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i=5



(3) For Y,

Cg (Y) —€9 + €4 + (7%

2k41 2k+1
=eo +e4+ €, + 2621'_ 2621'
1:3% Z;i+1
=€y + €1+ €, + 2621 - Z €2i
=2 k_Z1:3
=C(Y) + Z Cui1(Y) — Z Cuips(Y
—Cl —|— Z C4l+1 Z C4z+3

Cn—l(Y) =€1 — €Ep—2

2%—1 2%k—1
=€1 — €4}4+1 T E €2i41 — g €2i+1
i=1 i=1

2k—1

—E €2i41 — E €2i+1

= Z Cuiya(Y) — Z CuY
1=0 =1

and

On(Y) =€ +e3= CQ(Y)

(4) For Z,

Cg(Z) =e€9 + €4 + €n

2k+1 2k+1

=ey +ey4+ e, + E €2i+1 — E €241
=0 i=0

=e1+ex+e,1+e,—e —e3t+ez3tes—es+ E €2i+1 —
i=2 i=3

— Z Cu(2)
Z C4z

:Cl(Z) _02( "‘04 +ZC4’L
k
=C1(Z) = Co(Z) + Cu(2) + Y _ Chica

)+ ear — eapio

)+ Cha(Y),

2k 2k+1

g €2i+1

+ €4pr1 — €453

+ Cn—2(2)7



Cn-1(Z) =e1 —ep_a + €51

4k+1 441
=€1 — €4k+2 + Capy3 T E €; — E €;
i=3 i=3
4k+1
:61+€3—€3—€4+€5+€4—€6+ E €; — €y — €e7—
i=6
4k—1
E €; — €4k — €4j4+2 — €4k+1 T+ €4k+3
i=8

N

—Co(Z) — CU(Z) = Ca(2) + 3 (Cusal 2) + Cpea( 2)) -

=1

N

-1

(Chir2(Z) + Cuiss5(2)) — Cra(2),

i
and

Cn(Z) =e1 +e3 = CQ(Z)

Theorem 4.4. The minimum rank of the graph G3 is n — 3, and M (G3) = Z(Gs)
= 3.

Proof. Let xz,y,z € V(C,_1) with x ~ n and y ~ n. Since C,_; is an induced
subgraph of G3, by Lemma 3.1 we have that m(Gs) > m(C,_1) = n — 3. These
four types matrices W, X,Y, Z can be associated with G3. From Lemma 4.3 we
know that the rank of W, XY, Z are less than or equal to n — 3. Therefore, we
have m(G3) < n — 3. Thus the minimum rank of G3 is n — 3, and the maximum
nullity is 3. By Proposition 3.8, M(G3) < Z(G3), so we have to claim that there is
a zero-forcing set of G5 with size 3. Consider the set {z, z,n} colored in black. y is
the only one white neighbor of n, so y can change to black. For other white vertices,
using the same argument as the proof in Proposition 3.7 can color all white vertices

to black. Thus the set {z, z,n} is a zero-forcing set of G3 with size 3. O]

18



Conjecture 4.5. Let z,y € V(C,,_1) with & ~ y. If there are exactly two edges
incident on n such that n ~ x and n ~ y, then the minimum rank of this new graph
is n — 3, and the maximum nullity and the minimum size of zero-forcing set are

equal to 3.

Lemma 4.6. For all n € N, let A, be the n x n symmetric matrix associated
with a cycle defined as the matrix in Example 3.6. Thus for any subset S C [n]
with |S| > 2, there exists a vector u € R™ such that supp(u) C [max(S) — 1] and
supp(Anu) = S.

Proof. For integers 1 < i < j < n, define
by =(—1)%; + (—=1)'e;_y +--- + (=1) ey, and
Cij =(=1); + (=1) bigr + -+ (=1)) 771y
Then we have

e+ e+ (—1)" e —n, i=[n— 2]

Apbi = 0, 1=n—1;

(=) ey +ep 1+ (n—2)e,, i=mn.

\

AnCyj =€ + (1) e + (=1)"7'(j — i)en

Now suppose S = {t,t9,....tx} C[n|, k>3, and t; <ty < -+ < 1.
Case 1: t;, =n: Choose u = Cy, ¢, + Cy s+ -+ Chytp -
Then

k—1

Au =" A,Chy,

i=1
= Z ey, + (—1) 71" 1€tj + (=1)" 7 (t; — t1)en]
=( —2€t1+z tﬂ'_tll . nhZ]_ — 2)t1)en.

19



Thus supp(A,u) = S and supp(u) C [max(S) — 1].
k
Case 2: ty #n: Let a= > t; — (k—2)t;, d =lem((ts — t1),a).

i=3
Choose
k
d d
U= — Cirts — (;sz)
Then
d d <
Anu t2 ¢ A Otl to a(; AnOtl tz)
d d d
= 1)t d(—=1)""e, — —(k — 2)e;, —
tz _ tletl + t2 _ t1< ) €ty + ( ) € a( )etl
k
d e e
Do e 4 d(=1)" e,
i=3
ad—d(k—2)(t2—t1) d to—t1—1
— —1)t27h _
a(t2 — tl) “n + tz — tl( ) €tz
k
d
- -1 t1—1
IS

To check ad — d(k — 2)(t2 — t1) > 0, we claim a — (k — 2)(t2 — t1) > 0.

CL—(]C—2 Q—tl Zt— —2t1 (k_2)(t2_t1)

—Zt —(k—2)t
>(l€—2)t3 — (k—2)t2 > 0.

Thus supp(A,u) = S and supp(u) C [max(S) — 1]. O

Theorem 4.7. If G is a graph of order n which are obtained by adding a vertex n

and at least three edges to a cycle C),_1, then the minimum rank of G is n — 3, and

20



Proof. Let S = G1(V) = [t1,ta,...,tx], where t; € [n — 1],k > 3; and A,_; be the
(n —1) x (n — 1) matrix defined as the matrix in Example 3.6. By Lemma 4.6, we
know that there exists a vector u € R"™! such that supp(A,_ju) = S. Thus the

following matrix B satisfies rank(B) =n — 3 and I'(B) = G.

An—l An—lu
B—

ul'A,—; uTA,_u
nxn
This implies that the maximum nullity is 3. By proposition 3.8, M(G) < Z(G),
so we have to claim that there is a zero-forcing set of G with size 3. Let x,y €
[n — 1] and x ~ y. Consider the set {x,y,n} colored in black. For other white

vertices, we can color all white vertices to black by the same argument as the proof

in Proposition 3.7. Thus the set {x,y,n} is a zero-forcing set of G with size 3. [

Conjecture 4.8. If GG is a graph obtained by adding a vertex and some edges to
a cycle C,_1, then the maximum nullity of G is equal to the minimum size of a

zero-forcing set of G.

4.2 Buds

Here we use notation [z, j] to mean {¢,7 +1,---,5 — 1,5}

Definition 4.9. For integers m < n, let B, ,, be a class of graphs G with vertex

set V(G) = [n] satisfying the following axioms:

1. The subgraph of G induced on [n — m] is a cycle C,,_,,, and the subgraph

induced on [n] \ [n — m| has no edge.

2. Letl =ty <t1 <ty <---<tp,=n—m+1,and t; —t;_; > 2, for all j € [m].

Let S; = G1(n —m +1), where ¢ € [m]. Then |S;| >3 and S; C [t;_1,t; — 1].

The graph G € B,,,, is called a bud based on [n —m)].
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Theorem 4.10. If G € B, ,,,, then m(G) =n —m — 2.

Proof. Since G'is in B,, ,,, G has an induced subgraph C,,_,,. By Lemma 3.1, we have
m(G) > m(Cp—) = n—m—2. Now we claim that there exists a symmetric matrix B
associated with GG, and therank of Bisn—m—2. Let l =tp <t1 <ty < --- <t,, =
n—m+1,and t;—t;_; > 2, forall j € [n—m)]. Let S; = G1(n—m++1), where i € [m].
Then |S;| > 3 and S; C [t;_1,t; — 1]. Let A = (a;;) be the matrix associated with
cycle C,,_,, defined as the matrix in Example 3.6. By Lemma 4.6, for any i € [m)],

we can choose a vector u; € R*"™™ such that
supp(u;) C [max(S;) — 1] C [t; — 2] and supp(Au;) = S; C [ti—1,t; — 1], (4.1)

Notice that from the construction quui =0, if j < 4, and indeed for i # j since
uj Au; = uj Auj. Hence

u]TAui =0, for i # j. (4.2)

Now define the n x n symmetric matrix B = (b;;) by:

Qg if1<i<j<n-—m;
Uy Ay, i —m4+1<0 <5 <n;
bij = (4.3)
el Auj_pym, ifl<i<nandn—-m+1<j<n;
ul . Aej, ifn—m+1<i<nand1<j<n-—m.

A AC
CTA CTAC
From (4.1)(4.2)(4.3), we can easily check that I'(B) € By, ,. Forn—m+1 <i <mn,
the i-th column of B[[n —m]|[n]] is a linear combination of columns of B[[n —m]] =
A. Thus rank(B[[n — m]|[n]]) = rank(B[[n — m]]) = rank(A) = n —m — 2. For

n—m+1 <i <n, the i-th row of B is a linear combination of the first n — m rows
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of B. Hence rank(B) =rank(B[[n —m]|[n]]) =n —m — 2.

Corollary 4.11. If G € B, ,,,, then M(G) = Z(G) =m + 2.

Proof. By Proposition 3.8, we know that M(G) < Z(G). From Theorem 4.10, we
have m(G) = n—m—2. Thus M(G) = n—(n—m—2) = m+2. Hence Z(G) > m+2.
By coloring the set S = [n]\ [n —m — 2] in black, we can check that by using color-
change rule, all vertices can color to black. Therefore, Z(G) < n—(n—m—2) = m+2.
Hence M (G) = Z(G) = m + 2.

O

Example 4.12. Let G be a graph in By base on [8] such that G1(9) = {1,2,4},

G1(10) = {6,7,8} as in the following figure.

1

From Corollary 4.11, we know M (G) = 4 and then m(G) = 6. here we precisely give
a matrix B associated with G and the rank of B is 6. Let 57 = {1,2,4}, 5, = {6, 7,8}
and Ag be the matrix defined in Example 3.6. Choose u; = (0,2, —1,0,0,0,0,0)7,
uy = (—1,1,—1,1,—1,1,0,0)”. Then the following matrix B is associated with G

and rank(B) = 6.
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As Aguy Aguy
B = ’U/{Ag ’U/{Agul 0 =

UgAg 0 u2TA8u2

2 30 -1000 0 6

o 00 0 111 1 O

Example 4.13. Let G be a graph of order 8 such that G1(7) = {1,3,5}, G1(8) =

{2,4,6} as in the following figure.

Here we precisely give a matrix B associated with G and the rank of B is 4. Let
S1={1,3,5},5 = {2,4,6} and Ag be the matrix defined in Example 3.6. Choose

up = (0,1,-2,1,0,0)7, uy = (=2,2,—1,0,0,0)T. Then the following matrix B is
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associated with G and rank(B) = 4.

U{AG

UI‘QFA6

Aguy
ul Aguy

0

A@’LLQ

ugAGUQ
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