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圖的譜半徑與度數列之研究
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Spectral Radius and Degree Sequence
of a Graph

StudentǺChia-An Liu AdvisorǺChih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

Let G be a simple graph of order n. The spectral radius ρ(G) of G is the largest eigen-
value of its adjacency matrix. For each positive integer ℓ at most n, this dissertation
gives a sharp upper bound for ρ(G) by a function of the first ℓ vertex degrees in G,

which generalizes a series of previous results. Applications of these bounds on the
clique number, signless Laplace spectral radius, and generalized r-partite graphs are
provided. The idea of the above result also applies to bipartite graphs. Let k, p, q be
positive integers with k < p < q+1. We prove a conjecture stating that the maximum
spectral radius of a simple bipartite graph obtained from the complete bipartite graph
Kp,q of bipartition orders p and q by deleting k edges is attained when the deleted
edges are all incident on a common vertex which is located in the partite set of order
q.

Keywords: graph, bipartite graph, adjacency matrix, spectral radius, degree se-
quence.
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Chapter 1

Introduction

Algebraic graph theory is a branch of mathematics that studies graphs by using

algebraic properties of associated matrices. It has proven to be effective in treating

graphs. More in particular, spectral graph theory studies the relation between graph

properties and the eigenvalues of the adjacency matrix, Laplace matrix, or the signless

Laplace matrix of a graph. There is a large amount of literature on spectral graph

theory, well documented in several surveys and books, such as Biggs [5], Cvetković,

Doob and Sachs [16] (also see [15]), and Seidel [39].

Spectral graph theory is a useful subject. The founders of Google computed the

Perron-Frobenius eigenvector of the web graph and became billionaires. The largest

eigenvalue, also known as the spectral radius, of a graph is the largest eigenvalue of

its adjacency matrix. The basic information about the spectral radius of a (possibly

directed) graph is provided by Perron-Frobenius theory [8, Section 2.2]. The second

largest eigenvalue of a graph gives information about expansion and randomness prop-

erties [8, Chapter 4]. The smallest eigenvalue gives information about independence

number [26] and chromatic number [27, 44]. The second least eigenvalue of Laplace

matrix has been referred to as the algebraic connectivity of a graph [23]. Interlacing

inequalities between the eigenvalues of two graphs give information about their sub-

structure relations [25, Chapter 5]. Even the trivial fact that eigenvalue multiplicities

must be integral provides strong restrictions. For example, Moore graphs are classified

from this method [7, Theorem 6.7.1].

This dissertation is aiming at the relation between the spectral radius and degree

sequence of a graph. Let G be a simple graph of n vertices and e edges with degree

sequence d1 ≥ d2 ≥ · · · ≥ dn. The spectral radius ρ(G) of G is the largest eigenvalue

1



of its adjacency matrix and has been studied by many authors. It is well-known that

ρ(G) ≤ d1 [35, Chapter 2]. In 1985 [9, Corollary 2.3], Brualdi and Hoffman proved

that if e ≤ k(k − 1)/2 then

ρ(G) ≤ k − 1. (1.0.1)

In 1987 [41], Stanley improved (1.0.1) and showed hat

ρ(G) ≤ −1 +
√
1 + 8e

2
. (1.0.2)

If G is connected, in 1998 [29, Theorem 2] Yuan Hong improved (1.0.2) and showed

that

ρ(G) ≤
√
2e− n+ 1. (1.0.3)

In 2001 [30, Theorem 2.3], Hong et al. improved (1.0.3) and showed that

ρ(G) ≤
dn − 1 +

√
(dn + 1)2 + 4(2e− ndn)

2
. (1.0.4)

In 2004 [40, Theorem 2.2], Jinlong Shu and Yarong Wu showed that

ρ(G) ≤
dℓ − 1 +

√
(dℓ + 1)2 + 4(ℓ− 1)(d1 − dℓ)

2
(1.0.5)

for 1 ≤ ℓ ≤ n. Moreover, they showed in [40, Theorem 2.5] that if a + b ≥ d1 + 1

then (1.0.5) improves (1.0.4) where a is the number of vertices with the largest degree

d1 and b is the number of vertices with the second largest degree. In Section 3.2 we

present the following upper bounds for ρ(G) in terms of the degree sequence of G which

improves (1.0.5).

Let H, H ′ be two simple graphs with vertices sets V (H) ∩ V (H)′ = ϕ. The sum

H +H ′ of H and H ′ is the graph obtained from H and H ′ by adding an edge between

x and y for each pair (x, y) ∈ V (H)× V (H ′).

Theorem A. Let ℓ be a positive integer with 1 ≤ ℓ ≤ n. Then

ρ(G) ≤ ϕℓ :=
dℓ − 1 +

√
(dℓ + 1)2 + 4

∑ℓ−1
i=1(di − dℓ)

2
.

Furthermore, if G is connected then the above equality holds if and only if G is regular

or there exists 2 ≤ t ≤ ℓ and a regular graph H of order n−t+1 such that G = Kt−1+H.

2



This result also improves (1.0.4) since ϕn is exactly the upper bound in (1.0.4).

There are several applications of Theorem A. The spectral radius of the signless

Laplace matrix of G is denoted by q(G). Let ∆ij = di+ dj − 2 for each pair of adjacent

vertices i ∼ j in G be the vertex degrees of the line graph Gℓ of G, and ∆1 ≥ ∆2 ≥

. . . ≥ ∆e be a renumbering of them in non-increasing order. Then for 1 ≤ ℓ ≤ e, we

have

q(G) ≤ ψℓ := 2 +
∆ℓ − 1 +

√
(∆ℓ + 1)2 + 4

∑ℓ−1
i=1(∆i −∆ℓ)

2

with equality if and only if ∆1 = ∆e or there exists 2 ≤ t ≤ ℓ such that e− 1 = ∆1 =

∆t−1 > ∆t = ∆e.

Let 3 ≤ j ≤ n be the smallest integer such that
∑j

i=1 di < ℓ(ℓ − 1). We prove in

Section 3.3 that

ϕj = min{ϕk | 1 ≤ k ≤ n}.

Turán’s Theorem [42], proved in 1941, is a seminal result in extremal graph theory. In

its concise form it states that
n

n− d
≤ ω(G)

where d is the average vertex degree and ω(G) is the clique number of G. In 1986, Wilf

[45] proved that
n

n− ρ(G)
≤ ω(G).

There is also a lower bound for ω(G) presented by ϕj :

n

n− ϕj

< ω(G) +
1

3
.

In a series of papers, Bojilov and others have generalized the concept of an r-partite

graph. Let d(v) denote the degree of vertex v in G. They define a parameter, say θ(G),

to be the smallest integer r for which V (G) has an r-partition:

V (G) = V1 ∪ V2 ∪ ... ∪ Vr, such that d(v) ≤ n− ni, where ni = |Vi|,

for all v ∈ Vi and for i = 1, 2, ..., r. Bojilov et al. [6] proved that

θ(G) ≤ ω(G)

and Khadzhiivanov and Nenov [32] proved that

n

n− d
≤ θ(G).

3



Despite this bound, Elphick and Wocjan [21] demonstrated that

n

n− ρ(G)
̸≤ θ(G),

i.e., n/(n− ρ(G)) > θ(G) in some graphs. We prove in Section 4.5 that

n

n− ρ(G)
≤ n

n− ϕj

< θ(G) +
1

3
.

Brualdi and Hoffman proposed the problem of finding the maximum spectral radius

of a graph with precisely e edges in 1976 [3, p.438], and ten years later they gave a

conjecture in [9] that the maximum spectral radius of a graph with e edges is attained

by taking a complete graph and adding a new vertex which is adjacent to a correspond-

ing number of vertices in the complete graph. This conjecture was proved by Peter

Rowlinson in [38]. See [41, 24] also for the proof of partial cases of this conjecture.

The bipartite graphs analogue of the Brualdi-Hoffman conjecture was settled by

A. Bhattacharya, S. Friedland, and U.N. Peled [4] with the following statement: For

a connected bipartite graph G, ρ(G) ≤
√
e with equality iff G is a complete bipartite

graph. Moreover, they proposed the problem to determine graphs with maximum

spectral radius in the class of bipartite graphs with bipartition orders p and q, and e

edges. They then gave Conjecture B below.

Conjecture B. Let K(p, q, e) denote the family of e-edge subgraphs of the complete

bipartite graph Kp,q with bipartition orders p and q, and 1 < e < pq be integers. An

extremal graph that solves

max
G∈K(p,q,e)

ρ(G)

is obtained from a complete bipartite graph by adding one vertex and a corresponding

number of edges.

Conjecture B does not indicate that the adding vertex goes into which partite set of

a complete bipartite graph. For e ≥ pq − min(p, q), let Ke
p,q denote the graph which is

obtained from Kp,q by deleting pq−e edges incident on a common vertex in the partite

set of order no less than that of the other partite set. Figure 1.1 gives a such graph.

In 2010 [12], Yi-Fan Chen, Hung-Lin Fu, In-Jae Kim, Eryn Stehr and Brendon

Watts determined ρ(Ke
p,q) and gave an affirmative answer to Conjecture B when e =

pq− 2. Furthermore, they refined Conjecture B for the case when the number of edges

4



rr rr
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K5
2,3

Figure 1.1: The graph K5
2,3.

is at least pq − min(p, q) + 1 to the following conjecture.

Conjecture C. Suppose 0 < pq − e < min(p, q). Then for G ∈ K(p, q, e),

ρ(G) ≤ ρ(Ke
p,q).

Let H, H ′ be two bipartite graphs with given ordered bipartitions V (H) = X ∪ Y

and V (H ′) = X ′ ∪ Y ′, where V (H) ∩ V (H ′) = ϕ. The bipartite sum H ⊕ H ′ of H

and H ′ (with respect to the given ordered bipartitions) is the graph obtained from H

and H ′ by adding an edge between x and y for each pair (x, y) ∈ X × Y ′ ∪ X ′ × Y.

For example, Ke
p,q = Kp−pq+e,q−1 ⊕Npq−e,1 where Ns,t denotes the bipartite graph with

bipartition orders s, t and without any edges. We apply the idea of Theorem A to the

bipartite graphs and give Theorem D in Section 5.3.

Theorem D. Let G be a simple bipartite graph with bipartition orders p and q, and

corresponding degree sequences d1 ≥ d2 ≥ · · · ≥ dp and d′1 ≥ d′2 ≥ · · · ≥ d′q. For

1 ≤ s ≤ p and 1 ≤ t ≤ q, let Xs,t = dsd
′
t +

∑s−1
i=1 (di − ds) +

∑t−1
j=1(d

′
j − d′t) and

Ys,t =
∑s−1

i=1 (di − ds) ·
∑t−1

j=1(d
′
j − d′t). Then the spectral radius

ρ(G) ≤ ϕs,t :=

√√√√Xs,t +
√
X2

s,t − 4Ys,t

2
.

Furthermore, if G is connected then the above equality holds if and only if there exists

nonnegative integers s′ < s and t′ < t, and a biregular graph H of bipartition orders

p− s′ and q − t′ respectively such that G = Ks′,t′ ⊕H.

Based on Theorem D, in Section 5.5 we solve Conjecture C, and Conjecture B under

the assumption that 0 < pq − e < min(p, q).

The following preprints and papers are included in this dissertation:
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1. Chia-an Liu and Chih-wen Weng, Spectral radius and degree sequence of a graph,

Linear Algebra Appl. 438 (2013) 3511-3515.

2. Chia-an Liu and Chih-wen Weng, Spectral radius of bipartite graphs, Linear

Algebra Appl. 474 (2015) 30-43.

3. Clive Elphick and Chia-an Liu, A (forgotten) bound for the spectral radius of a

graph, to appear in Taiwanese Journal of Mathematics DOI: 10.11650/tjm.19.2015.5393.

This dissertation is organized as follows.

In Chapter 2 we introduce definitions, terminologies and some results concerning

the graphs, matrices of graphs, and spectra of graphs.

In Chapter 3 we prove Theorem A.

In Chapter 4 several applications of Theorem A are introduced. Moreover, partial

result of Theorem A is written in a different statement.

In Chapter 5 we focus on the bipartite graphs. We prove Theorem D, and then

give affirmative answers to Conjecture C (and then Conjecture B under additional

assumptions).
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Chapter 2

Preliminaries

In this chapter we review some definitions and basic concepts concerning the graphs,

spectra of graphs, and matrices.

2.1 Graphs

The following basic knowledge of graphs is referred to [43].

Definition 2.1.1. A graph G is a triple consisting of a vertex set V (G), an edge

set E(G), and a relation that associates with each edge two vertices (not necessarily

distinct) called its endpoints. The order of G is the number of vertices in G, i.e. |V (G)|.

Definition 2.1.2. A loop is an edge whose endpoints are equal. Multiple edges are

edges having the same pair of endpoints. A simple graph is a graph having no loops or

multiple edges. We specify a simple graph by its vertex set and edge set, treating the

edge set as a set of unordered pairs of vertices and writing e = uv (or e = vu) for an

edge e with endpoints u and v.

Definition 2.1.3. Let G be a loopless graph with vertex set V (G) and edge set E(G).

If vertex v ∈ V (G) is an endpoint of e ∈ E(G), then v and e are incident. The degree

of vertex v is the number of incident edges. The degree sequence of a graph is the list

of vertex degrees, usually written in nonincreasing order, as d1 ≥ d2 ≥ · · · ≥ dn where

n = |V (G)|. G is regular if d1 = dn, and G is k-regular if d1 = dn = k.

7



Definition 2.1.4. The complement G of a simple graph G is the simple graph with

vertex set V (G) defined by uv ∈ E(G) if and only if uv ̸∈ E(G). A clique in a graph is

a set of pairwise adjacent vertices.

Definition 2.1.5. An independent set (or stable set) in a graph is a set of pairwise

nonadjacent vertices. A graph G is bipartite if V (G) is the union of two disjoint

(possibly empty) independent sets called partite sets of G.

Definition 2.1.6. Let G be a bipartite graph with p and q vertices in its partite sets

and corresponding degree sequences d1 ≥ d2 ≥ · · · ≥ dp and d′1 ≥ d′2 ≥ · · · ≥ d′q. We

say that G is biregular if d1 = dp and d′1 = d′q.

Definition 2.1.7. The chromatic number of a graph G, written χ(G), is the minimum

number of colors needed to label the vertices so that adjacent vertices receive different

colors. A graph G is k-partite if V (G) can be expressed as the union of k (possibly

empty) independent sets.

This generalizes the idea of bipartite graphs, which are 2-partite.

Definition 2.1.8. The line graph of a simple graph G, written Gℓ, is the graph whose

vertices are the edges of G, with ef ∈ E(Gℓ) when e = uv and f = vw in G for some

u, v, w ∈ V (G).

r
ru

w

r rv y r
rx
z

G

rrwv

uv rvy rr yzyx
Gℓ

Figure 2.1: An example of a simple graph and its line graph.

Definition 2.1.9. The clique number of a graph G, written ω(G), is the maximum

size of a set of pairwise adjacent vertices in G.

8



Definition 2.1.10. An isomorphism from a simple graph G to a simple graph H is a

bijection f : V (G) → V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We

say ”G is isomorphic to H”, written G ∼= H, if there is an isomorphism from G to H.

Proposition 2.1.11. [43, Proposition 1.1.24] On any set of (simple) graphs, the iso-

morphism relation is an equivalence relation.

Definition 2.1.12. An isomorphism class of graphs is an equivalence class of graphs

under isomorphism relation.

When discussing a graph G, we have a fixed vertex set, but our structural comments

apply also to every graph isomorphic to G. Our conclusions are independent of the

names (labels) of the vertices. Thus, we use the informal expression ”unlabeled graph”

to mean an isomorphism class of graphs.

Definition 2.1.13. A path is a simple graph whose vertices can be ordered so that

two vertices are adjacent if and only if they are consecutive in the list. A cycle is a

graph with an equal number of vertices and edges whose vertices can be placed around

a circle so that two vertices are adjacent if and only if they appear consecutively along

the circle. The (unlabeled) path and cycle with n vertices are denoted by Pn and Cn,

respectively; an n-cycle is a cycle with n vertices.

r r
r rr

P5

r r
r rr

C5

Figure 2.2: The graphs P5 and C5.

Definition 2.1.14. A complete graph is a simple graph whose vertices are pairwise

adjacent; the (unlabeled) complete graph with n vertices is denoted by Kn. A complete

bipartite graph is a simple bipartite graph such that two vertices are adjacent if and only

if they are in different partite sets. When the sets have sizes s and t, the (unlabeled)

complete bipartite graph is denoted by Ks,t.
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r r
r rr

K5

rr rr
r

K2,3 = K3,2

Figure 2.3: The graphs K5, K2,3, and K3,2.

Definition 2.1.15. The n-vertex star, denoted by Sn, is the complete bipartite graph

K1,n−1 for n ≥ 2. The n-vertex wheel Wn is formed by connecting an isolated vertex

to all vertices of an (n− 1)-cycle, for n ≥ 4.

r r
r r r

r r

S7 = K1,6

r r
r r r

r r

W7

Figure 2.4: The graphs S7 and W7.

Definition 2.1.16. A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that,

for 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. A u, v-walk has first vertex u and

last vertex v; these are its endpoints.

Definition 2.1.17. A graph G is connected if it has a u, v-walk whenever u, v ∈ V (G)

(otherwise, G is disconnected).

2.2 Graph spectrum

The background of graph spectrum mentioned in this section is referred to [8].

Definition 2.2.1. Let G be a simple graph. The adjacency matrix of G is the 0-1

matrix A = A(G) indexed by the vertex set V (G) of G, where Axy = 1 if and only if

xy ∈ E(G).

10



Note that the degree of vertex v is the sum of the entries of A in the row indexed

by v.

Definition 2.2.2. Let G be a simple graph and D be the diagonal matrix indexed

by the vertex set V (G) such that Dxx is the degree of x. The Laplace matrix of G is

L(G) = L = D − A, and the signless Laplace matrix of G is Q(G) = Q = D + A.

Definition 2.2.3. The spectrum of a simple graph G is by definition the spectrum of

its adjacency matrix A, that is, its set of eigenvalues together with their multiplicities.

The spectral radius ρ(G) of G is the largest eigenvalue of its adjacency matrix A. Let

q(G) be the largest eigenvalue of the signless Laplace matrix Q(G) of G.

2.3 Nonnegative matrices

Let M = (mij) be an n×n matrix. We say that M is positive (resp. nonnegative) if

mij > 0 (resp. mij ≥ 0) for all i, j. We say that M is reducible if the indices 1, 2, · · · , n

can be divided into two disjoint nonempty sets i1, i2, · · · , iµ and j1, j2, · · · , jν where

µ+ ν = n such that miαjβ = 0 for α = 1, 2, · · · , µ and β = 1, 2, · · · ν. A square matrix

is called irreducible if it is not reducible. Simply considering the adjacent relation of a

graph and the definition of irreducible matrices, we have the following proposition.

Proposition 2.3.1. The adjacency matrix of a simple graph G is irreducible if and

only if G is connected.

The following lemma is a part of the Perron-Frobenius Theorem [35, Chapter 2].

Note that according to the Perron-Frobenius Theorem, the spectral radius of a sym-

metric nonnegative matrix is equal to its largest eigenvalue.

Theorem 2.3.2. If M is a nonnegative n × n matrix with spectral radius ρ(M) and

row-sums r1, r2, . . . , rn, then

ρ(M) ≤ max
1≤i≤n

ri.

Moreover, if M is irreducible then the above equality holds if and only if the row-sums

of M are all equal.

11



2.4 Quotient matrices

Let M be a real matrix described in the following block form

M =


M1,1 · · · M1,m

... ...
Mm,1 · · · Mm,m

 ,

where the diagonal blocks Mi,i are square. Let bij denote the average row-sum of Mi,j,

i.e. bij is the sum of entries in Mi,j divided by the number of rows. Then B = (bij)

is called a quotient matrix of M . If in addition for each pair i, j, Mi,j has constant

row-sum, then B is called an equitable quotient matrix of M . The following lemma is

direct from the definition of matrix multiplication [8, Chapter 2].

Lemma 2.4.1. Let B be an equitable quotient matrix of M with an eigenvalue θ. Then

M also has the eigenvalue θ.

12



Chapter 3

Spectral Radius and Degree

Sequence of a Graph

In Chapter 3 we give a series of upper bounds in terms of the degree sequence of a

simple graph, which generalizes some previous results. Throughout this chapter let G

be a simple graph of n vertices and e edges with degree sequence d1 ≥ d2 ≥ · · · ≥ dn.

Note that
∑n

i=1 di = 2e.

3.1 Known upper bounds for the spectral radius

ρ(G)

We shall review previous known results of upper bounds of spectral radius of graph

G in expression of part or all of the degree sequence.

In 1985 [9, Corollary 2.3], Brualdi and Hoffman showed the following result.

Theorem 3.1.1. Let k be the smallest positive integer such that e ≤ k(k− 1)/2. Then

ρ(G) ≤ k − 1.

Furthermore, if G is connected then the above equality holds if and only if G is isomor-

phic to the complete graph Kn of order n.

In 1987 [41], Stanley improved Theorem 3.1.1 and showed the following result.

13



Theorem 3.1.2. Let G be a simple graph. Then

ρ(G) ≤ −1 +
√
1 + 8e

2
.

If G is connected then the above equality holds if and only if G is isomorphic to Kn.

If G is connected, in 1998 [29, Theorem 2] Yuan Hong improved Theorem 3.1.2 and

showed the following result.

Theorem 3.1.3. If G is connected then

ρ(G) ≤
√
2e− n+ 1

with equality holds if and only if G is isomorphic to the star K1,n−1 or Kn.

Definition 3.1.4. LetH, H ′ be two simple graphs with vertices sets V (H)∩V (H)′ = ϕ.

The sum H +H ′ of H and H ′ is the graph obtained from H and H ′ by adding an edge

between x and y for each pair (x, y) ∈ V (H)× V (H ′).

In 2001 [30, Theorem 2.3], Hong et al. improved Theorem 3.1.3 and showed the

following result.

Theorem 3.1.5. Let G be a simple graph. Then

ρ(G) ≤
dn − 1 +

√
(dn + 1)2 + 4(2e− ndn)

2
.

Furthermore, if G is connected then the above equality holds if and only if G is regular or

there exists 2 ≤ t ≤ n and a regular graph H of order n− t+1 such that G = Kt−1+H.

In 2004 [40, Theorem 2.2], Jinlong Shu and Yarong Wu improved Theorem 2.3.2 in

the case that A is the adjacency matrix of G by showing the following result.

Theorem 3.1.6. Let ℓ be a positive integer with 1 ≤ ℓ ≤ n. Then

ρ(G) ≤
dℓ − 1 +

√
(dℓ + 1)2 + 4(ℓ− 1)(d1 − dℓ)

2
.

Furthermore, if G is connected then the above equality holds if and only if G is regular or

there exists 2 ≤ t ≤ ℓ and a regular graph H of order n− t+1 such that G = Kt−1+H.

14



Moreover, they also showed in [40, Theorem 2.5] that if p + q ≥ d1 + 1 then

Theorem 3.1.6 improves Theorem 3.1.5 where p is the number of vertices with the

largest degree d1 and q is the number of vertices with the second largest degree. The

special case ℓ = 2 of Theorem 3.1.6 is reproved [18].

3.2 New upper bounds ϕℓ for ρ(G)

We give a series of sharp upper bounds of ρ(G) in Theorem 3.2.1 in terms of the

degree sequence of G which improves Theorem 3.1.1 to Theorem 3.1.6.

Theorem 3.2.1. Let ℓ be a positive integer with 1 ≤ ℓ ≤ n. Then

ρ(G) ≤ ϕℓ :=
dℓ − 1 +

√
(dℓ + 1)2 + 4

∑ℓ−1
i=1(di − dℓ)

2
.

Furthermore, if G is connected then the above equality holds if and only if G is regular or

there exists 2 ≤ t ≤ ℓ and a regular graph H of order n− t+1 such that G = Kt−1+H.

Remark 3.2.2. This result improves Theorem 3.1.3 and Theorem 3.1.6 since ϕn is

exactly the upper bounds in Theorem 3.1.3 and is at most the upper bound appearing

in Theorem 3.1.6. Additionally, generalized from this research, a similar upper bound

of the spectral radius in terms of the average 2-degree sequence of a graph is presented

in [31].

Proof of Theorem 3.2.1. Let the vertices be labeled by 1, 2, . . . , n with degrees d1 ≥

d2 ≥ · · · ≥ dn, respectively. For each 1 ≤ i ≤ ℓ − 1, let xi ≥ 1 be a variable to be

determined later. Let U = diag(x1, x2, . . . , xℓ−1, 1, 1, . . . , 1) be a diagonal matrix of

size n× n. Then U−1 = diag(x−1
1 , x−1

2 , . . . , x−1
ℓ−1, 1, 1, . . . , 1).

Let B = U−1AU. Notice that A and B have the same eigenvalues.

Let r1, r2, . . . , rn be the row-sums of B. Then for 1 ≤ i ≤ ℓ− 1 we have

ri =
ℓ−1∑
k=1

xk
xi
aik +

n∑
k=ℓ

1

xi
aik =

1

xi

n∑
k=1

aik +
1

xi

ℓ−1∑
k=1

(xk − 1)aik

≤ 1

xi
di +

1

xi

(
ℓ−1∑

k=1,k ̸=i

xk − (ℓ− 2)

)
, (3.2.1)
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and for ℓ ≤ j ≤ n we have

rj =
ℓ−1∑
k=1

xkajk +
n∑

k=ℓ

ajk =
n∑

k=1

ajk +
ℓ−1∑
k=1

(xk − 1)ajk

≤ dℓ +

(
ℓ−1∑
k=1

xk − (ℓ− 1)

)
. (3.2.2)

For 1 ≤ i ≤ ℓ− 1 let

xi = 1 +
di − dℓ
ϕℓ + 1

≥ 1, (3.2.3)

where ϕℓ is defined in Theorem 3.2.1. Clearly that ϕℓ has the following quadratic

equation

(ϕℓ + 1)2 − (dℓ + 1)(ϕℓ + 1)−
ℓ−1∑
i=1

(di − dℓ) = 0.

Therefore
ℓ−1∑
k=1

xk − (ℓ− 1) = (ϕℓ + 1)− (dℓ + 1) = ϕℓ − dℓ, (3.2.4)

and hence for 1 ≤ i ≤ ℓ− 1

xi(ϕℓ + 1) = di + 1 +
ℓ−1∑
k=1

xk − (ℓ− 1) = di + xi +
ℓ−1∑

k=1,k ̸=i

xk − (ℓ− 2). (3.2.5)

By (3.2.5) for 1 ≤ i ≤ ℓ− 1 we have

ri ≤
1

xi
di +

1

xi

(
ℓ−1∑

k=1,k ̸=i

xk − (ℓ− 2)

)
= ϕℓ,

and by (3.2.4) for ℓ ≤ j ≤ n we have

rj ≤ dℓ +

(
ℓ−1∑
k=1

xk − (ℓ− 1)

)
= ϕℓ.

Hence by Theorem 2.3.2,

ρ(G) = ρ(B) ≤ max
1≤i≤n

{ri} ≤ ϕℓ. (3.2.6)

The first part of Theorem 3.2.1 follows.

To prove the second part of Theorem 3.2.1, suppose that G is connected. The

sufficient condition of ϕℓ = ρ(G) follows from the fact that

ϕℓ ≤
dℓ − 1 +

√
(dℓ + 1)2 + 4(ℓ− 1)(d1 − dℓ)

2
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and applying the second part in Theorem 3.1.6.

To prove the necessary condition of ϕℓ = ρ(G), suppose ϕℓ = ρ(G). The connectivity

of G implies that A is irreducible, and so as B because U is a diagonal matrix with

positive entries on the diagonal. From (3.2.6) we have ϕℓ = max
1≤i≤n

{ri} and then by the

second part of Theorem 2.3.2 and the irreducibility of B the ri’s are all equal. It follows

that the equalities in (3.2.1) and (3.2.2) all hold. If d1 = dℓ, then d1 = ϕ1 = ϕℓ = ρ(G),

and G is regular by the second part of Theorem 2.3.2. Suppose 2 ≤ t ≤ ℓ such that

dt−1 > dt = dℓ. Then xi > 1 for 1 ≤ i ≤ t − 1 by (3.2.3). For each 1 ≤ i ≤ ℓ − 1, the

equality in (3.2.1) implies that aik = 1 for 1 ≤ k ≤ t − 1, k ̸= i. For each ℓ ≤ j ≤ n,

the equality in (3.2.2) implies that ajk = 1 for 1 ≤ k ≤ t − 1 and dj = dℓ. Hence

n−1 = d1 = dt−1 > dt = dℓ = dn. It follows that G = Kt−1+H for some regular graph

H of order n− t+ 1.

We complete the proof.

We give two examples which meet the equalities in Theorem 3.2.1.

Example 3.2.3. Consider the graph K−
5 obtained by deleting one edge from the com-

plete graph K5 on 5 vertices. Its degree sequence is d1 = d3 = 5− 1 and d4 = d5 = 3,

so ρ(K−
5 ) = ϕ4(K

−
5 ) = 1 +

√
7. Consider the wheel graph W7 on 7 vertices. Its degree

sequence is d1 = 7− 1 and d2 = d7 = 3, so ρ(W7) = ϕ2(W7) = 1 +
√
7.

r r
r rr

K−
5

r r
r r r

r r

W7

Figure 3.1: Two examples meet the equalities in Theorem 3.2.1.
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3.3 The sequence ϕ1, ϕ2, . . . , ϕn

The sequence ϕ1, ϕ2, . . . , ϕn is not necessarily non-increasing. i.e. the upper bound

ϕℓ of ρ(G) is not always getting better. For example, the path Pn of n vertices has

2 = d1 = dn−2 > dn−1 = dn = 1, and it is immediate to check that if n ≥ 6 then

ϕ1 = ϕ2 = 2 <
√
n− 1 = ϕn−1 = ϕn.

Clearly that for all 1 ≤ s < t ≤ n, ds = dt implies that ϕs = ϕt. However, ϕs = ϕt

dose not imply ds = dt. For example, in the graph with degree sequence (4, 3, 3, 2, 1, 1),

one can check that ϕ4 = ϕ5 = 3 but d4 > d5.

r r
r r r

r

Figure 3.2: A graph with ϕ4 = ϕ5 = 3, but d4 > d5.

Recall that ds = ds+1 implies ϕs = ϕs+1 for 1 ≤ s ≤ n−1. The following proposition

describes the shape of the sequence ϕ1, ϕ2, . . . , ϕn.

Proposition 3.3.1. Let 1 ≤ s ≤ n− 1 and suppose ds > ds+1. Then

ϕs ≽ ϕs+1 iff
s∑

i=1

di ≽ s(s− 1),

where ≽ ∈ {>,=}.

Proof. Recall that

ϕs =
ds − 1 +

√
(ds + 1)2 + 4

∑s−1
i=1 (di − ds)

2
.

18



The proposition follows from the following equivalent relations step by step:

ϕs ≽ ϕs+1

⇔ ds − ds+1 +

√√√√(ds + 1)2 + 4
s−1∑
i=1

(di − ds)

≽

√√√√(ds+1 + 1)2 + 4
s∑

i=1

(di − ds+1)

⇔

√√√√(ds + 1)2 + 4
s−1∑
i=1

(di − ds) ≽ 2s− (ds + 1) (3.3.1)

⇔ (ds + 1)2 + 4
s∑

i=1

(di − ds) ≽ 4s2 − 4s(ds + 1) + (ds + 1)2

⇔
s∑

i=1

di ≽ s(s− 1),

where the relation in (3.3.1) is obtained from the second by taking square on both sides,

simplifying it, and deleting the common term ds−ds+1. Notice that if 2s− (ds+1) < 0

in (3.3.1) then in the case that ≽ is =, all statements fails, and in the case that ≽ is

> the left hand side of (3.3.1) is at least ds + 1, which is greater than |2s− (ds + 1)|,

so the equivalent relation in the next step holds.

We have known that ds = ds+1 implies ϕs = ϕs+1. Combining with Proposition 3.3.1

we have the following results.

Lemma 3.3.2. (i) If
∑s

i=1 di ≥ s(s− 1) then ϕs ≥ ϕs+1.

(ii) If
∑s

i=1 di < s(s− 1) then ϕs ≤ ϕs+1.

(iii) ϕs = ϕs+1 iff ds = ds+1 or
∑s

i=1 di = s(s− 1).

Corollary 3.3.3. Let n ≥ 3 and ℓ be the smallest integer such that
∑ℓ

i=1 di < ℓ(ℓ− 1).

Then for 1 ≤ j ≤ n

ϕj = min{ϕk | 1 ≤ k ≤ n}

if and only if dj = dℓ, or dj = dℓ−1 with
∑ℓ−1

i=1 di = (ℓ− 1)(ℓ− 2).
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Proof. For 1 ≤ s ≤ ℓ − 1, from Lemma 3.3.2(i) we have ϕs ≥ ϕs+1 since
∑s

i=1 di ≥

s(s − 1). For ℓ ≤ t ≤ n − 1, notice that
∑t

i=1 di < t(t − 1) implies dt < t − 1,

and hence
∑t+1

i=1 di < t(t − 1) + (t − 1) < t(t + 1). From Lemma 3.3.2(ii) we have

ϕℓ ≤ ϕℓ+1 ≤ · · · ≤ ϕn since
∑ℓ

i=1 di < ℓ(ℓ− 1). Hence ϕℓ = min{ϕk | 1 ≤ k ≤ n}.

If
∑s

i=1 di = s(s − 1) then s − 1 ≥ ds ≥ ds+1, and
∑s+1

i=1 di ≤ s(s − 1) + (s − 1) <

s(s + 1). Hence
∑s

i=1 di > s(s − 1) for 1 ≤ s ≤ ℓ − 2. The second part immediately

follows from Lemma 3.3.2(iii), and the result follows.
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Chapter 4

Applications of the New Upper

Bounds ϕℓ

The best degree-based bounds ϕℓ for the spectral radius ρ(G) of graphs are obtained

in Chapter 3. We give applications of them in this chapter.

4.1 A different approach of ϕℓ

This chapter begins by demonstrating that a bound for the spectral radius dating

from 1983 is equivalent to min{ϕℓ | 1 ≤ ℓ ≤ n}. In 1983, Edwards and Elphick proved

the following result in [19, Theorem 8] (and its corollary).

Theorem 4.1.1. The spectral radius

ρ(G) ≤ y − 1

where y = y(G) > 0 is defined by the equality

y(y − 1) =

⌊y⌋∑
k=1

dk + (y − ⌊y⌋)d⌈y⌉. (4.1.1)

They also showed that 1 ≤ y ≤ n and that y is a single-valued function of G in [19,

Lemma 3].

This bound is exact for regular graphs because, we then have that

d = ρ(G) ≤ y − 1 =
1

y

 ⌊y⌋∑
k=1

d+ (y − ⌊y⌋)d

 = d
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where d is the common vertex degree.

The bound is also exact for various bidegree graphs. For example, let G be the star

graph K1,n−1 on n vertices which has ρ(G) =
√
n− 1. It is easy to show that y > 1.

Then the equation 4.1.1 becomes

y(y − 1) = (n− 1) + ⌊y⌋ − 1 + (y − ⌊y⌋) = n− 2 + y,

so y = 1 +
√
n− 1.

Similarly let G be the wheel graph on n vertices (n ≥ 4), which has ρ(G) = 1+
√
n.

It is straightforward to show that y = 2 +
√
n, so again the bound is exact.

The following theorem combines Theorem 3.2.1 and Theorem 4.1.1 which are over

30 years!

Theorem 4.1.2. Let a be the smallest integer such that
∑a

i=1 di ≤ a(a− 1). Then

y − 1 = ϕa+1 =
da+1 − 1 +

√
(da+1 + 1)2 + 4

∑a
i=1(di − da+1)

2
,

where y is defined in (4.1.1).

Proof. Observing the definition of y, we have ⌊y⌋ = a. Hence the equation (4.1.1) can

be written as

y(y − 1) =
a∑

i=1

di + (y − a)da+1. (4.1.2)

Note that if y is an integer then y = a. Hence in (4.1.2) the term (y − a)da = (y −

a)da+1 = 0. Therefore

y2 − y(1 + da+1)−
a∑

i=1

(di − da+1) = 0.

The result follows by directly solving the above quadratic equation.

4.2 Upper bounds for the spectral radius q(G) of

signless Laplace matrix of G

Let q(G) denote the spectral radius of the signless Laplace matrix of G. In this

section we investigate graph and line graph degree-based bounds for q(G) and then

compare them experimentally.
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The following well-known Lemma (see, for example, Lemma 2.1 in [11]) provides

an equality between the spectral radii of the signless Laplace matrix and the adjacency

matrix of the line graph of a graph.

Lemma 4.2.1. If Gℓ denotes the line graph of G then

q(G) = 2 + ρ(Gℓ).

Let ∆ij = di+dj−2 for each pair of adjacent vertices i ∼ j inG be the vertex degrees

of Gℓ, and ∆1 ≥ ∆2 ≥ . . . ≥ ∆e be a renumbering of them in non-increasing order.

Cvetković et al. proved the following theorem using Lemma 4.2.1 and Theorem 2.3.2.

Theorem 4.2.2. (Theorem 4.7 in [17]) Let G be a simple connected graph. Then

q(G) ≤ 2 + ∆1

with equality if and only if G is regular or biregular.

The following lemma is proved in various ways in [40, 18, 34].

Lemma 4.2.3. Let G be a simple connected graph. Then

ρ(G) ≤
d2 − 1 +

√
(d2 − 1)2 + 4d1
2

with equality if and only if G is regular or n− 1 = d1 > d2 = dn.

Chen et al. combined Lemma 4.2.1 and Lemma 4.2.3 to prove the following result.

Theorem 4.2.4. (Theorem 3.4 in [14]) Let G be a simple connected graph. Then

q(G) ≤ 2 +
∆2 − 1 +

√
(∆2 − 1)2 + 4∆1

2

with equality if and only if G is regular, or biregular, or the tree obtained by joining an

edge to the centers of two stars K1,n
2
−1 with even n, or n− 1 = d1 = d2 > d3 = dn = 2.

Recall Theorem 3.2.1 as a lemma.
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Lemma 4.2.5. Let ℓ be a positive integer with 1 ≤ ℓ ≤ n. Then

ρ(G) ≤ ϕℓ :=
dℓ − 1 +

√
(dℓ + 1)2 + 4

∑ℓ−1
i=1(di − dℓ)

2
.

Furthermore, if G is connected then the above equality holds if and only if G is regular

or there exists 2 ≤ t ≤ ℓ such that n− 1 = d1 = dt−1 > dt = dn.

Combining Lemma 4.2.1 and Lemma 4.2.5 provides the following series of upper

bounds for the signless Laplacian spectral radius.

Theorem 4.2.6. Let ℓ be a positive integer with 1 ≤ ℓ ≤ e. Then

q(G) ≤ ψℓ := 2 +
∆ℓ − 1 +

√
(∆ℓ + 1)2 + 4

∑ℓ−1
i=1(∆i −∆ℓ)

2
. (4.2.1)

Furthermore, if G is connected then the above equality holds if and only if ∆1 = ∆e or

there exists 2 ≤ t ≤ ℓ such that e− 1 = ∆1 = ∆t−1 > ∆t = ∆e.

Proof. Since G is simple, Gℓ is simple. Hence it is a direct result of Lemma 4.2.1 and

Lemma 4.2.5.

Remark 4.2.7. Note that Theorem 4.2.6 generalizes both Theorem 4.2.2 and Theo-

rem 4.2.4 since those bounds are precisely ψ1 and ψ2 in (4.2.1) respectively.

We list all the extremal graphs with equalities in (4.2.1) in the following. From

Theorem 4.2.2 the graphs with q(G) = ψ1, i.e. ∆1 = ∆e, are regular or biregular.

From Theorem 4.2.4 the graphs with q(G) < ψ1 and q(G) = ψ2, i.e. e − 1 =

∆1 > ∆2 = ∆e, are the tree obtained by joining an edge to the centers of two stars

K1,n
2
−1 with even n (where Figure 4.1 is an example of such graph with n = 6), or

n− 1 = d1 = d2 > d3 = dn = 2.

r
r r r r

r

Figure 4.1: The tree obtained by joining an edge to the centers of two stars K1,2.
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The only graph with q(G) < min{ψi|i = 1, 2} and q(G) = ψ3, i.e. m − 1 = ∆1 =

∆2 > ∆3 = ∆e, is the 4-vertex graph K+
1,3 obtained by adding one edge to K1,3.

r r
r
r

Figure 4.2: The graph K+
1,3.

We now prove that no graph satisfies q(G) < min{ψi|1 ≤ i < k− 1} and q(G) = ψk

where e ≥ k ≥ 4. Let G be a counter-example such that e−1 = ∆1 = ∆k−1 > ∆k = ∆e.

Since ∆3 = e − 1 there are at least 3 edges incident to all other edges in G. If these

3 edges form a 3-cycle then there is nowhere to place the fourth edge, which is a

contradiction. Hence they are incident to a common vertex, and G has to be a star

graph. However a star graph is biregular so q(G) = ψ1, which completes the proof.

Nikiforov [37] has recently strengthened various upper bounds for q(G) with the

following theorem.

Theorem 4.2.8. If G is a graph with n vertices, e edges, maximum degree d1 and

minimum degree dn, then

q(G) ≤ min
(
2d1,

1

2

(
d1 + 2dn − 1 +

√
(d1 + 2dn − 1)2 + 16e− 8(n− 1 + d1)dn

))
.

Equality holds if and only if G is regular or G has a component of order d1+1 in which

every vertex is of degree d1 or dn, and all other components are dn-regular.

It is straightforward to compare the above bounds experimentally using the named

graphs and LineGraph function in Wolfram Mathematica. Theorem 4.2.8 is exact for

some graphs (eg. Wheels Wn for n ≥ 5) for which Theorems 4.2.4 and 4.2.6 are inexact,

and Theorems 4.2.4 and 4.2.6 are exact for some graphs (eg. complete bipartite graphs

Kp,q with 2 ≤ min(p, q)) for which Theorem 4.2.8 is inexact. Tabulated below are the
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numbers of named irregular graphs on 10, 16, 25 and 28 vertices in Mathematica and

the average values of q and the bounds in Theorems 4.2.8, 4.2.4 and 4.2.6.

n irrregular graphs q(G) Theorem 4.2.8 Theorem 4.2.4 Theorem 4.2.6
10 59 9.3 10.0 10.3 9.8

16 48 10.3 11.2 11.5 11.0

25 25 11.5 13.4 13.1 12.6

28 21 11.2 12.6 12.7 12.2

Theorem 4.2.4 gives results that are broadly equal on average to Theorem 4.2.8, and

Theorem 4.2.6 gives results which are on average modestly better. This is unsurprising

since more data is involved in Theorem 4.2.6 than in the other two theorems.

4.3 A lower bound for q(G)

Elphick and Wocjan [21] defined a measure of graph irregularity, ν = ν(G), as

follows:

ν =
n
∑
d2i

4e2
,

where ν ≥ 1 with equality only for regular graphs.

It is well known that q(G) ≥ 2ρ(G) and Hofmeister [28] has proved that ρ(G)2 ≥

(
∑
d2i )/n, so it is immediate that

q(G) ≥ 2ρ(G) ≥ 4e
√
ν

n
.

Liu and Liu [33] improved this bound in the following theorem, for which we provide

a simpler proof using Lemma 4.2.1.

Theorem 4.3.1. Let G be a graph with irregularity ν and signless Laplace spectral

radius q(G). Then

q(G) ≥ 4eν

n
.

This is exact for complete bipartite graphs.

Proof. Let Gℓ denote the line graph of G. From Lemma 4.2.1 we know that q(G) =

2+ρ(Gℓ) and it is well known that |V (Gℓ)| = e and |E(Gℓ)| = (
∑
d2i /2)−e. Therefore

q(G) = 2 + ρ(Gℓ) ≥ 2 +
2|E(Gℓ)|
|V (Gℓ)|

= 2 +
2

e

(∑
d2i
2

− e

)
=

∑
d2i
e

=
4eν

n
.
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For the complete bipartite graph Ks,t,

q(G) = s+ t =
st(s+ t)

st
=

∑
d2i
e

=
4eν

n
.

4.4 Lower bounds for the clique number

Turán’s Theorem [42], proved in 1941, is a seminal result in extremal graph theory.

In its concise form it states that

n

n− d
≤ ω(G)

where d is the average vertex degree.

Edwards and Elphick [19] proved the following lower bound for the clique number.

Theorem 4.4.1. Let G be a simple graph of n vertices. Then

n

n− y(G) + 1
< ω(G) +

1

3
,

where y(G) is defined in (4.1.1).

In 1986, Wilf [45] proved that

n

n− ρ(G)
≤ ω(G).

Note, however, that
n

n− y(G) + 1
̸≤ ω(G),

since for example n
n−y+1

= 2.13 for K7,9, and n
n−y+1

= 3.1 for K3,3,4.

Nikiforov [36] proved a conjecture due to Edwards and Elphick [19] that:

Theorem 4.4.2. Let G be a simple graph with e edges. Then

2e

2e− ρ(G)2
≤ ω(G).

Experimentally, bound in Theorem 4.4.2 performs better than bound in Theo-

rem 4.4.1 for most graphs.
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4.5 Generalized r-partite graphs

In a series of papers, Bojilov and others have generalized the concept of an r-partite

graph. They define a parameter, say θ(G), to be the smallest integer r for which V (G)

has an r-partition:

V (G) = V1 ∪ V2 ∪ ... ∪ Vr, such that d(v) ≤ n− ni, where ni = |Vi|,

for all v ∈ Vi and for i = 1, 2, ..., r.

Note that θ(G) ≤ ω(G) in [6], and Khadzhiivanov and Nenov [32] proved that

n

n− d
≤ θ(G).

Despite this bound, Elphick and Wocjan [21] demonstrated that

n

n− ρ(G)
̸≤ θ(G),

i.e., n/(n− ρ(G)) > θ(G) in some graphs.

However, it is proved below in Corollary 4.5.5 that:

n

n− ρ(G)
≤ n

n− y(G) + 1
< θ(G) +

1

3
.

Definition 4.5.1. If H is any graph of order n with degree sequence dH(1) ≥ dH(2) ≥

... ≥ dH(n), and if H∗ is any graph of order n with degree sequence dH∗(1) ≥ dH∗(2) ≥

... ≥ dH∗(n), such that dH(i) ≤ dH∗(i) for all i, then H∗ is said to dominate H.

Erdös [22] proved that if G is any graph of order n, then there exists a graph G∗

of order n, where χ(G∗) = ω(G) = r, such that G∗ dominates G and G∗ is complete

r-partite.

Theorem 4.5.2. If G is any graph of order n, then there exists a graph G∗ of order

n, where ω(G∗) = θ(G) = r, such that G∗ dominates G, and G∗ is complete r-partite.

Proof. Let G be a generalized r-partite graph with θ(G) = r and ni = |Vi| for 1 ≤ i ≤ r,

and let G∗ be the complete r-partite graph Kn1,...,nr . Let d(v) denote the degree of
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vertex v inG and d∗(v) denote the degree of vertex v inG∗. Clearly χ(G∗) = ω(G∗) = r,

and by the definition of a generalized r-partite graph,

d∗(v) = n− ni ≥ d(v)

for all v ∈ Vi and for 1 ≤ i ≤ r. Therefore G∗ dominates G.

Recall that y(G) is defined in Theorem 4.1.1.

Lemma 4.5.3. (Lemma 4 in [19]) Assume G∗ dominates G. Then y(G∗) ≥ y(G).

Theorem 4.5.4. Let G be a simple graph of n vertices. Then

n

n− y(G) + 1
< θ(G) +

1

3
.

Proof. Let G∗ be any graph of order n, where ω(G∗) = θ(G) such that G∗ dominates

G. (By Theorem 4.5.2 at least one such graph G∗ exists.) Then, using Lemma 4.5.3

and Theorem 4.4.1,

n

n− y(G) + 1
≤ n

n− y(G∗) + 1
< ω(G∗) +

1

3
= θ(G) +

1

3
≤ ω(G) +

1

3
.

Corollary 4.5.5. Let G be a simple graph of n vertices. Then

n

n− ρ(G)
< θ(G) +

1

3
.

Proof. Immediate since ρ(G) ≤ y(G)− 1.
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Chapter 5

Spectral Radius of Bipartite Graphs

Brualdi and Hoffman proposed the problem of finding the maximum spectral radius

of a graph with precisely e edges in 1976 [3, p.438], and ten years later they gave a

conjecture in [9] that the maximum spectral radius of a graph with e edges is attained

by taking a complete graph and adding a new vertex which is adjacent to a correspond-

ing number of vertices in the complete graph. This conjecture was proved by Peter

Rowlinson in [38]. See [41, 24] also for the proof of partial cases of this conjecture.

The next problem is then to determine graphs with maximum spectral radius in the

class of connected graphs with n vertices and e edges. The cases e ≤ n + 5 when n is

sufficiently large are settled by Brualdi and Solheid [10], and the cases e− n =
(
r
2

)
− 1

by F. K. Bell [1].

The bipartite graphs analogue of the Brualdi-Hoffman conjecture was settled by

A. Bhattacharya, S. Friedland, and U.N. Peled [4] with the following statement: For

a connected bipartite graph G, ρ(G) ≤
√
e with equality iff G is a complete bipartite

graph. Moreover, they proposed the problem to determine graphs with maximum

spectral radius in the class of bipartite graphs with bipartition orders p and q, and e

edges. They then gave Conjecture 5.1.1 below.

5.1 Conjectures B and C

From now on the graphs considered are simple bipartite. Let K(p, q, e) denote the

family of e-edge bipartite graphs with bipartition orders p and q.
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Conjecture 5.1.1. Let p, q, e be positive integers with 1 < e < pq. An extremal graph

that solves

max
G∈K(p,q,e)

ρ(G)

is obtained from a complete bipartite graph by adding one vertex and a corresponding

number of edges.

Moreover, in [4, Theorem 8.1] Conjecture 5.1.1 was proved in the case that e = st−1

for some positive integers s, t satisfying 2 ≤ s ≤ p < t ≤ q ≤ t+ (t− 1)/(s− 1). They

also indicated that the only extremal graph is obtained from Ks,t by deleting an edge.

Conjecture 5.1.1 does not indicate into which partite set of a complete bipartite

graph the adding vertex goes. For e ≥ pq − max(p, q) (resp. e ≥ pq − min(p, q)), let
eKp,q (resp. Ke

p,q) denote the graph which is obtained from Kp,q by deleting pq − e

edges incident on a common vertex which belongs to the partite set of order no larger

than (resp. no less than) that of the other partite set. Then the extremal graph in

Conjecture 5.1.1 is either eKs,t or Ke
s,t for some positive integers s ≤ p and t ≤ q which

meet the constraints of the number of edges. Figure 5.1 gives two such graphs.

rr rr
r

K5
2,3 =

5K2,3

rr
rr
rr

5K2,4

Figure 5.1: The graphs K5
2,3, 5K2,3 and 5K2,4.

In 2010 [12], Yi-Fan Chen, Hung-Lin Fu, In-Jae Kim, Eryn Stehr and Brendon

Watts determined ρ(Ke
p,q) and gave an affirmative answer to Conjecture 5.1.1 when

e = pq − 2 and min(p, q) ≥ 2. Furthermore, they refined Conjecture 5.1.1 for the case

when the number of edges is at least pq − min(p, q) + 1 to the following conjecture.

Conjecture 5.1.2. Let p, q, e be positive integers with 0 < pq − e < min(p, q). Then

for G ∈ K(p, q, e),

ρ(G) ≤ ρ(Ke
p,q).
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This chapter is organized as follows. Known results that we need are provided in

Section 5.2. Theorem 5.3.3 in Section 5.3 presents a series of sharp upper bounds of

ρ(G) in terms of the degree sequence of G. Some special cases of Theorem 5.3.3 are

further investigated in Section 5.4 with which Corollary 5.4.2 is the most useful in this

paper. We prove Conjecture 5.1.2 as an application of Corollary 5.4.2 in Section 5.5.

Finally we propose another conjecture which is a general refinement of Conjecture 5.1.1

in Section 5.6.

5.2 Known results

Basic results are provided in this section for later use.

Lemma 5.2.1. ([4, Proposition 2.1]) Let G be a simple bipartite graph with e edges.

Then

ρ(G) ≤
√
e

with equality iff G is a disjoint union of a complete bipartite graph and isolated vertices.

Let G be a simple bipartite graph with bipartition orders p and q, and degree

sequences d1 ≥ d2 ≥ · · · ≥ dp and d′1 ≥ d′2 ≥ · · · ≥ d′q respectively. We say that G is

biregular if d1 = dp and d′1 = d′q.

Lemma 5.2.2. ([2, Lemma 2.1]) Let G be a simple connected bipartite graph. Then

ρ(G) ≤
√
d1d′1

with equality iff G is biregular.

5.3 A series of sharp upper bounds ϕs,t of ρ(G)

We give a series of sharp upper bounds of ρ(G) in terms of the degree sequence

of a bipartite graph G in this section. The following set-up is for the description of

extremal graphs of our upper bounds.
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Definition 5.3.1. Let H, H ′ be two bipartite graphs with given ordered bipartitions

V (H) = X∪Y and V (H ′) = X ′∪Y ′, where V (H)∩V (H ′) = ϕ. The bipartite sum H⊕H ′

of H and H ′ (with respect to the given ordered bipartitions) is the graph obtained from

H and H ′ by adding an edge between x and y for each pair (x, y) ∈ X × Y ′ ∪X ′ × Y.

Example 5.3.2. Let Ns,t denote the bipartite graph with bipartition orders s, t and

without any edges. Then for p ≤ q and e meeting the required constraints, eKp,q =

Kp−1,q−pq+e ⊕N1,pq−e and Ke
p,q = Kp−pq+e,q−1 ⊕Npq−e,1.

Theorem 5.3.3. Let G be a simple bipartite graph with bipartition orders p and q,

and corresponding degree sequences d1 ≥ d2 ≥ · · · ≥ dp and d′1 ≥ d′2 ≥ · · · ≥ d′q.

For 1 ≤ s ≤ p and 1 ≤ t ≤ q, let Xs,t = dsd
′
t +
∑s−1

i=1 (di − ds) +
∑t−1

j=1(d
′
j − d′t) and

Ys,t =
∑s−1

i=1 (di − ds) ·
∑t−1

j=1(d
′
j − d′t). Then

ρ(G) ≤ ϕs,t :=

√√√√Xs,t +
√
X2

s,t − 4Ys,t

2
.

Furthermore, if G is connected then the above equality holds if and only if there exists

nonnegative integers s′ < s and t′ < t, and a biregular graph H of bipartition orders

p− s′ and q − t′ respectively such that G = Ks′,t′ ⊕H.

Before proving Theorem 5.3.3, we mention some simple properties of ϕs,t.

Lemma 5.3.4. (i) ϕ1,1 =
√
d1d′1.

(ii) If dk = ds then ϕk,t = ϕs,t. If d′ℓ = d′t then ϕs,ℓ = ϕs,t.

(iii)

ϕ2
s,t ≥ max

(
s−1∑
i=1

(di − ds),
t−1∑
j=1

(d′j − d′t)

)
(5.3.1)

with equality iff dsd
′
t = 0. Moreover, if the equality in (5.3.1) holds then ϕ2

s,t = e.

(iv) ϕ4
s,t −Xs,tϕ

2
s,t + Ys,t = 0.
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Proof. (i), (ii), (iv) are immediate from the definition of ϕs,t. Clearly dsd
′
t = 0 if and

only if

max
(

s−1∑
i=1

(di − ds),
t−1∑
j=1

(d′j − d′t)

)
= e.

Hence (iii) follows by using that Xs,t ≥
∑s−1

i=1 (di − ds) +
∑t−1

j=1(d
′
j − d′t) with equality

iff dsd
′
t = 0 to simplify ϕs,t.

We set up notations for the use in the proof of Theorem 5.3.3. For 1 ≤ k ≤ s− 1,

let

xk =


1 +

d′t(dk − ds)

ϕ2
s,t −

∑s−1
i=1 (di − ds)

, if ϕ2
s,t >

∑s−1
i=1 (di − ds);

1, if ϕ2
s,t =

∑s−1
i=1 (di − ds),

(5.3.2)

and for 1 ≤ ℓ ≤ t− 1 let

x′ℓ =


1 +

ds(d
′
ℓ − d′t)

ϕ2
s,t −

∑t−1
j=1(d

′
j − d′t)

, if ϕ2
s,t >

∑t−1
j=1(d

′
j − d′t);

1, if ϕ2
s,t =

∑t−1
j=1(d

′
j − d′t).

(5.3.3)

Note that xk, x′ℓ ≥ 1 because of Lemma 5.3.4(iii). The relations between the above

parameters are given in the following.

Lemma 5.3.5. (i) Suppose ϕ2
s,t >

∑s−1
a=1(da − ds). Then

1

xi

(
did

′
t +

t−1∑
h=1

(d′h − d′t) +
s−1∑
k=1

(xk − 1)di

)
= ϕ2

s,t

for 1 ≤ i ≤ s− 1, and

dsd
′
t +

t−1∑
h=1

(d′h − d′t) +
s−1∑
k=1

(xk − 1)ds = ϕ2
s,t.

(ii) Suppose ϕ2
s,t >

∑t−1
b=1(d

′
b − d′t). Then

1

x′j

(
dsd

′
j +

s−1∑
h=1

(dh − ds) +
t−1∑
ℓ=1

(x′ℓ − 1)d′j

)
= ϕ2

s,t

for 1 ≤ j ≤ t− 1, and

dsd
′
t +

s−1∑
h=1

(dh − ds) +
t−1∑
ℓ=1

(x′ℓ − 1)d′t = ϕ2
s,t.
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Proof. Referring to (5.3.2) and Lemma 5.3.4(iv),

1

xi

(
did

′
t +

t−1∑
h=1

(d′h − d′t) +
s−1∑
k=1

(xk − 1)di

)
=

1

ϕ2
s,t −

∑s−1
k=1(dk − ds) + d′t(di − ds)

×

(
ϕ2
s,t

(
did

′
t +

t−1∑
h=1

(d′h − d′t)

)
−

t−1∑
h=1

(d′h − d′t)
s−1∑
k=1

(dk − ds)

)
= ϕ2

s,t

for 1 ≤ i ≤ s− 1, and

dsd
′
t +

t−1∑
h=1

(d′h − d′t) +
s−1∑
k=1

(xk − 1)ds

=
1

ϕ2
s,t −

∑s−1
k=1(dk − ds)

(
ϕ2
s,t

(
dsd

′
t +

t−1∑
h=1

(d′h − d′t)

)
−

t−1∑
h=1

(d′h − d′t)
s−1∑
k=1

(dk − ds)

)
= ϕ2

s,t.

Hence (i) follows. Similarly, referring to (5.3.3) and Lemma 5.3.4(iv) we have (ii).

Let U = {ui | 1 ≤ i ≤ p} and V = {vj | 1 ≤ j ≤ q} be the bipartition of G such that

di is the degree of ui for 1 ≤ i ≤ p, d′j is the degree of vj for 1 ≤ j ≤ q, d1 ≥ d2 · · · ≥ dp

and d′1 ≥ d′2 · · · ≥ d′q. For 1 ≤ i, j ≤ p, let nij denote the numbers of common neighbors

of ui and uj, i.e., nij = |G(ui)∩G(uj)| where G(u) is the set of neighbors of the vertex

u in G. Similarly, for 1 ≤ i, j ≤ q let n′
ij = |G(vi) ∩ G(vj)|. Since G is bipartite, the

adjacency matrix A and its square A2 look like the following in block form:

A =

(
0 B

BT 0

)
, A2 =

(
BBT 0

0 BTB

)
=

(
(nij)1≤i,j≤p 0

0 (n′
ij)1≤i,j≤q

)
.

(5.3.4)

We have the following properties of nij and n′
ij.

Lemma 5.3.6. (i) For 1 ≤ i ≤ p and 1 ≤ j ≤ q, nii = di and n′
jj = d′j.

(ii) For 1 ≤ i, j ≤ p, nij ≤ di with equality if and only if G(uj) ⊇ G(ui).

(iii) For 1 ≤ i, j ≤ q, n′
ij ≤ d′i with equality if and only if G(vj) ⊇ G(vi).

(iv) For 1 ≤ i ≤ p,

p∑
k=1

nik =
∑

j: uivj∈E(G)

d′j ≤ (di − t+ 1)d′t +
t−1∑
h=1

d′h.
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(v) For 1 ≤ j ≤ q,

q∑
k=1

n′
jk =

∑
i: uivj∈E(G)

di ≤ (d′j − s+ 1)ds +
s−1∑
h=1

dh.

Proof. (i)-(iii) are immediate from the definition of nij. Counting the pairs (uk, vj)

such that vj ∈ G(ui) ∩G(uk) in two orders (j, k) and (k, j), we have the first equality

in (iv). The second inequality of (iv) is clear since d′j is non-increasing. (v) is similar

to (iv).

The proof of Theorem 5.3.3

Proof. Clearly ρ(A)2 = ρ(A2). In the following we will show that ρ(A2) ≤ ϕ2
s,t. Let

U = diag(x1, x2, · · · , xs−1, 1, · · · , 1︸ ︷︷ ︸
p

, x′1, x
′
2, · · · , x′t−1, 1, · · · , 1︸ ︷︷ ︸

q

)

be a diagonal matrix of order p+ q. Let C = U−1A2U. Then A2 and C are similar and

with the same spectrum. Let r1, · · · , rp, r′1, · · · , r′q be the row-sums of C. Referring to

(5.3.4), we have

ri =
s−1∑
k=1

xk
xi
nik +

p∑
k=s

1

xi
nik

=
1

xi

p∑
k=1

nik +
1

xi

s−1∑
k=1

(xk − 1)nik for 1 ≤ i ≤ s− 1; (5.3.5)

ri =
s−1∑
k=1

xknik +

p∑
k=s

nik =

p∑
k=1

nik +
s−1∑
k=1

(xk − 1)nik for s ≤ i ≤ p; (5.3.6)

r′j =
t−1∑
ℓ=1

x′ℓ
x′j
n′
jℓ +

q∑
ℓ=t

1

x′j
n′
jℓ

=
1

x′j

q∑
ℓ=1

n′
jℓ +

1

x′j

t−1∑
ℓ=1

(x′ℓ − 1)n′
jℓ for 1 ≤ j ≤ t− 1; (5.3.7)

r′j =
t−1∑
ℓ=1

x′ℓn
′
jℓ +

q∑
ℓ=t

n′
jℓ =

q∑
ℓ=1

n′
jℓ +

t−1∑
ℓ=1

(x′ℓ − 1)n′
jℓ for t ≤ j ≤ q. (5.3.8)

If ϕ2
s,t =

∑s−1
a=1(da − ds) then xk = 1 for 1 ≤ k ≤ s − 1 by (5.3.2) and ϕ2

s,t = e by

Lemma 5.3.4(iii). Hence (5.3.5) and (5.3.6) become

ri =

p∑
k=1

nik =
∑

j: uivj∈E(G)

d′j ≤ e = ϕ2
s,t (5.3.9)

36



for 1 ≤ i ≤ p. Suppose ϕ2
s,t >

∑s−1
a=1(da − ds). Referring to (5.3.5) and (5.3.6), for

1 ≤ i ≤ s− 1

ri ≤
1

xi

(
(di − t+ 1)d′t +

t−1∑
h=1

d′h

)
+

1

xi

s−1∑
k=1

(xk − 1)di = ϕ2
s,t (5.3.10)

and for s ≤ i ≤ p

ri ≤ (di − t+ 1)d′t +
t−1∑
h=1

d′h +
s−1∑
k=1

(xk − 1)di (5.3.11)

≤ (ds − t+ 1)d′t +
t−1∑
h=1

d′h +
s−1∑
k=1

(xk − 1)ds = ϕ2
s,t, (5.3.12)

where the inequalities are from Lemma 5.3.6(ii)(iv) and the non-increasing of degree

sequence, and the equalities are from Lemma 5.3.5(i). Thus, ri ≤ ϕ2
s,t for 1 ≤ i ≤ p.

Similarly, referring to (5.3.7), (5.3.8), Lemma 5.3.6(iii)(v), the non-increasing of degree

sequence, and Lemma 5.3.5(ii) we have r′j ≤ ϕ2
s,t for 1 ≤ j ≤ q. Hence ρ(A2) = ρ(C) ≤

ϕ2
s,t by Theorem 2.3.2.

To verify the second part of Theorem 5.3.3, assume that G is connected. We prove

the sufficient conditions of ρ(G) = ϕs,t. If s′ = 0 and t′ = 0 then G is biregular. By

Lemma 5.2.2 and Lemma 5.3.4(i)(ii), ρ(G) =
√
d1d′1 = ϕs,t. Suppose s′ = 0 and t′ ≥ 1.

Then d1 = dp and p = d′1 = d′t′ ≥ d′t′+1 = d′q. We take the equatable quotient matrix E

of A with respect to the partition {{1, . . . , p}, {p+1, . . . , p+ t′}, {p+ t′+1, . . . , p+q}}.

Hence

E =


0 t′ ds − t′

p 0 0

d′t 0 0

 .

The eigenvalues of E are 0 and ±
√
dsd′t + t′(p− d′t) = ±ϕs,t. By Lemma 2.4.1, ϕs,t is

also an eigenvalue of A. Since ρ(G) ≤ ϕs,t has been shown in the first part, we have

ρ(G) = ϕs,t. Similarly for the case s′ ≥ 1 and t′ = 0. Suppose s′ ≥ 1 and t′ ≥ 1. Then

q = d1 = ds′ ≥ ds′+1 = dp and p = d′1 = d′t′ ≥ d′t′+1 = d′q. We take the equatable

quotient matrix F of A with respect to the partition {{1, . . . , s′}, {s′ + 1, . . . , p}, {p+
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1, . . . , p+ t′}, {p+ t′ + 1, . . . , p+ q}}. Hence

F =



0 0 t′ q − t′

0 0 t′ ds − t′

s′ p− s′ 0 0

s′ d′t − s′ 0 0


.

Then the eigenvalues of F are

±

√√√√Xs,t ±
√
X2

s,t − 4Ys,t

2
.

We see ϕs,t is an eigenvalue of F, and by Lemma 2.4.1 ϕs,t is also an eigenvalue of A.

Hence ρ(G) = ϕs,t. Here we complete the proof of the sufficient conditions of ϕs,t =

ρ(G).

To prove the necessary conditions of ρ(G) = ϕs,t, suppose ρ(G) = ϕs,t. Then by

Theorem 2.3.2 ri = r′j = ϕ2
s,t for 1 ≤ i ≤ p and 1 ≤ j ≤ q. Let s′ < s and t′ < t be

the smallest nonnegative integers such that ds′+1 = ds and d′t′+1 = d′t, respectively. We

prove either d1 = dp or q = d1 = ds′ > ds′+1 = dp in the following. The connectedness

of G implies dsd′t > 0 so that

ϕ2
s,t > max

(
s−1∑
i=1

(di − ds),
t−1∑
j=1

(d′j − d′t)

)

by Lemma 5.3.4(iii). Hence the equalities in (5.3.10) to (5.3.12) all hold. The choose

of s′ and the equalities in (5.3.12) imply that ds′+1 = ds = dp. If s′ = 0 then d1 = dp.

Suppose s′ ≥ 1. For 1 ≤ i ≤ s′, since di > ds and ϕ2
s,t >

∑s−1
a=1(da − ds), we have

xi > 1 by (5.3.2). The equalities in (5.3.10) imply nik = di and then G(uk) ⊇ G(ui) by

Lemma 5.3.6(ii) for 1 ≤ k ≤ s′ and 1 ≤ i ≤ s − 1. Similarly the equalities in (5.3.11)

imply G(uk) ⊇ G(ui) for 1 ≤ k ≤ s′ and s ≤ i ≤ p by Lemma 5.3.6(ii). That is,

G(u1) = G(u2) = · · · = G(us′) ⊇ G(ui) for s′ + 1 ≤ i ≤ p.

Due to the connectedness of G, d1 = ds′ = q. The result follows. Similarly, either

d′1 = d′q or p = d′1 = d′t′ > d′t′+1 = d′q. Clearly that the graphs with those degree

sequences are Ks′,t′+H for some biregular graph H of bipartition orders p−s′ and q−t′
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respectively. Here we complete the proof for the necessary conditions of ϕs,t = ρ(G),

and also for Theorem 5.3.3.

Remark 5.3.7. Other previous results shown by the style of the above proof can be

found in [40, 34, 13, 31]. Similar earlier results are referred to [9, 10, 41, 29, 30].

5.4 A few special cases of Theorem D

In this section we study some special cases of ϕs,t in Theorem 5.3.3. We follow

the notations in Theorem 3.3. As ϕ1,1 =
√
d1d′1 in Lemma 5.3.4(i), Theorem 5.3.3

provides another proof of ρ(G) ≤
√
d1d′1 in Lemma 5.2.2. Applying Theorem 5.3.3

and simplifying the formula ϕs,t in cases (s, t) = (1, q) and (s, t) = (p, 1), we have the

following corollary.

Corollary 5.4.1. (i) ρ(G) ≤ ϕ1,q =
√
e− (q − d1)d′q.

(ii) ρ(G) ≤ ϕp,1 =
√
e− (p− d′1)dp.

We quickly observe that

Xp,q = dpd
′
q + (e− pdp) + (e− qd′q) = 2e− (pdp + qd′q − dpd

′
q) (5.4.1)

and

Yp,q = (e− pdp)(e− qd′q). (5.4.2)

Hence we have the following corollary.

Corollary 5.4.2.

ρ(G) ≤

√√√√2e− (pdp + qd′q − dpd′q) +
√

(pdp + qd′q − dpd′q)
2 − 4dpd′q(pq − e)

2
.

By adding an isolated vertex if necessary, we might assume dp = 0 and find ϕp,q =
√
e from Corollary 5.4.2. Hence Theorem 5.3.3 provides another proof of ρ(G) ≤

√
e

in Lemma 5.2.1.
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5.5 Proof of Conjecture C

When e, p, q are fixed, the formula

ϕp,q(dp, d
′
q) =

√√√√2e− (pdp + qd′q − dpd′q) +
√
(pdp + qd′q − dpd′q)

2 − 4dpd′q(pq − e)

2
(5.5.1)

obtained in Corollary 5.4.2 is a 2-variable function. The following lemma will provide

shape of the function ϕp,q(dp, d
′
q).

Lemma 5.5.1. If 1 ≤ d′q ≤ p− 1 and qd′q ≤ e then

∂ϕp,q(dp, d
′
q)

∂dp
< 0.

Proof. Referring to (5.5.1), it suffices to show that

∂

∂dp

(
2e− (pdp + qd′q − dpd

′
q) +

√
(pdp + qd′q − dpd′q)

2 − 4dpd′q(pq − e)
)

=− p+ d′q +
(pdp + qd′q − dpd

′
q)(p− d′q)− 2d′q(pq − e)√

(pdp + qd′q − dpd′q)
2 − 4dpd′q(pq − e)

(5.5.2)

is negative. If qd′q = e then (5.5.2) has negative value 2(d′q−p). Indeed if the numerator

of the fraction in (5.5.2) is not positive then (5.5.2) has negative value. Thus assume

that it is positive and qd′q < e. From simple computation to have the fact that(
(pdp + qd′q − dpd

′
q)− 2d′q ·

pq − e

p− d′q

)2

−
(
(pdp + qd′q − dpd

′
q)

2 − 4dpd
′
q(pq − e)

)
=

4d′2q (pq − e)

(p− d′q)
2

· (qd′q − e) < 0,

we find that the fraction in (5.5.2) is strictly less than p− d′q, so the value in (5.5.2) is

negative.

Remark 5.5.2. From Example 5.3.2, if p ≤ q then the graphs eKp,q = Kp−1,q−pq+e +

N1,pq−e and Ke
p,q = Kp−pq+e,q−1+Npq−e,1 satisfy the equalities in Theorem 5.3.3. Hence

ρ( eKp,q) = ϕp,q(q − pq + e, p − 1) and ρ(Ke
p,q) = ϕp,q(q − 1, p − pq + e); the latter is

expanded as

ρ(Ke
p,q) =

√
e+

√
e2 − 4(q − 1)(p− pq + e)(pq − e)

2
(5.5.3)

by (5.5.1).
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Lemma 5.5.3. Suppose 0 < pq − e < min(p, q), 1 ≤ dp ≤ q − 1, 1 ≤ d′q ≤ p− 1 and

dp + d′q = e− (p− 1)(q − 1). (5.5.4)

Then

ϕp,q(dp, d
′
q) ≤ ρ(Ke

p,q).

Proof. From symmetry, we assume p ≤ q. Referring to (5.5.1) and (5.5.3), we only need

to show that

e− (pdp + qd′q − dpd
′
q) +

√
(pdp + qd′q − dpd′q)

2 − 4dpd′q(pq − e) (5.5.5)

≤
√
e2 − 4(q − 1)(p− pq + e)(pq − e). (5.5.6)

From (5.5.4), we have

e− (pdp + qd′q − dpd
′
q) = (p− d′q − 1)(q − dp − 1) ≥ 0 (5.5.7)

and

dpd
′
q =

(dp + d′q)
2 − [2dp − (dp + d′q)]

2

4

≥(e− (p− 1)(q − 1))2 − [2(q − 1)− (e− (p− 1)(q − 1))]2

4

=(q − 1)(p− pq + e). (5.5.8)

Hence the equation (5.5.5) is at most

e− (pdp + qd′q − dpd
′
q) +

√
(pdp + qd′q − dpd′q)

2 − 4(q − 1)(p− pq + e)(pq − e). (5.5.9)

Set a = e − (pdp + qd′q − dpd
′
q) and b = 4(q − 1)(p − pq + e)(pq − e). Note that a ≥ 0

by (5.5.7) and b ≥ 0 by the relations between p, q, e. Using the fact that

√
e2 − b−

√
(e− a)2 − b ≥

√
e2 −

√
(e− a)2 = a (5.5.10)

from the concave property of the function y =
√
x, we find the value in (5.5.9) is at

most that in (5.5.6) and the result follows.

The proof of Conjecture 5.1.2
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Proof. By Theorem 5.3.3, ρ(G) ≤ ϕp,q(dp, d
′
q). Note that the assumption 0 < pq − e <

min(p, q) implies 1 ≤ dp ≤ q − 1 and 1 ≤ d′q ≤ p− 1. Let ep = e− (p− 1)(q − 1)− d′q.

Clearly that 1 ≤ ep ≤ dp and qd′q ≤ e. By Lemma 5.5.1, ϕp,q(dp, d
′
q) ≤ ϕp,q(ep, d

′
q). With

ep in the role of dp in Lemma 5.5.3, we have ϕp,q(ep, d
′
q) ≤ ρ(Ke

p,q). This completes the

proof.

5.6 Concluding remark

We give a series of sharp upper bounds for the spectral radius of bipartite graphs in

Theorem 5.3.3. One of these upper bounds can be presented only by five variables: the

number e of edges, bipartition orders p and q, and the minimal degrees dp and d′q in the

corresponding partite sets as shown in Corollary 5.4.2. We apply this bound when three

variables e, p, q are fixed to prove Conjecture 5.1.2, a refinement of Conjecture 5.1.1 in

the assumption that 0 < pq − e < min(p, q). To conclude this paper we propose the

following general refinement of Conjecture 5.1.1.

Conjecture 5.6.1. Let G ∈ K(p, q, e). Then

ρ(G) ≤ ρ(Ke
s,t)

for some positive integers s ≤ p and t ≤ q such that 0 ≤ st− e ≤ min(s, t).

We believe that the function ϕp,q(dp, d
′
q) in (5.5.1) will still play an important role

in solving Conjecture 5.6.1. Two of the key points might be to investigate the shape of

the 4-variable function ϕp,q(dp, d
′
q) with variables p, q, dp, d′q, and to check that for which

sequence s, t, ds, d′t such that s ≤ p and t ≤ q and 0 ≤ st− e ≤ min(s, t), there exists

a bipartite graph H with e edges whose spectral radius satisfying ρ(H) = ϕs,t(ds, d
′
t),

where s, t are the bipartition orders of H and ds and d′t are corresponding minimum

degrees.
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