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Spectral Radius and Degree Sequence

of a Graph

Student : Chia-An Liu Advisor @ Chih-Wen Weng

Department of Applied Mathematics
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Abstract

Let G be a simple graph of order n. The spectral radius p(G) of G is the largest eigen-
value of its adjacency matrix. For each positive integer ¢ at most n, this dissertation
gives a sharp upper bound for p(G) by a function of the first ¢ vertex degrees in G,
which generalizes a series of previous results. Applications of these bounds on the
clique number, signless Laplace spectral radius, and generalized r-partite graphs are
provided. The idea of the above result also applies to bipartite graphs. Let k,p, g be
positive integers with £ < p < ¢+ 1. We prove a conjecture stating that the maximum
spectral radius of a simple bipartite graph obtained from the complete bipartite graph
K, , of bipartition orders p and ¢ by deleting k edges is attained when the deleted

edges are all incident on a common vertex which is located in the partite set of order

q.

Keywords: graph, bipartite graph, adjacency matrix, spectral radius, degree se-

quence.
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Chapter 1

Introduction

Algebraic graph theory is a branch of mathematics that studies graphs by using
algebraic properties of associated matrices. It has proven to be effective in treating
graphs. More in particular, spectral graph theory studies the relation between graph
properties and the eigenvalues of the adjacency matrix, Laplace matrix, or the signless
Laplace matrix of a graph. There is a large amount of literature on spectral graph
theory, well documented in several surveys and books, such as Biggs [5], Cvetkovic¢,

Doob and Sachs [16] (also see [15]), and Seidel [39].

Spectral graph theory is a useful subject. The founders of Google computed the
Perron-Frobenius eigenvector of the web graph and became billionaires. The largest
eigenvalue, also known as the spectral radius, of a graph is the largest eigenvalue of
its adjacency matrix. The basic information about the spectral radius of a (possibly
directed) graph is provided by Perron-Frobenius theory [8, Section 2.2]. The second
largest eigenvalue of a graph gives information about expansion and randomness prop-
erties [8, Chapter 4]. The smallest eigenvalue gives information about independence
number [26] and chromatic number [27, 44]. The second least eigenvalue of Laplace
matrix has been referred to as the algebraic connectivity of a graph [23]. Interlacing
inequalities between the eigenvalues of two graphs give information about their sub-
structure relations [25, Chapter 5]. Even the trivial fact that eigenvalue multiplicities
must be integral provides strong restrictions. For example, Moore graphs are classified

from this method [7, Theorem 6.7.1].

This dissertation is aiming at the relation between the spectral radius and degree
sequence of a graph. Let G be a simple graph of n vertices and e edges with degree

sequence dy; > dy > -+ > d,. The spectral radius p(G) of G is the largest eigenvalue



of its adjacency matrix and has been studied by many authors. It is well-known that
p(G) < dy [35, Chapter 2]. In 1985 [9, Corollary 2.3], Brualdi and Hoffman proved
that if e < k(k — 1)/2 then

p(G) <k-—1 (1.0.1)

In 1987 [41], Stanley improved (1.0.1) and showed hat

< —1++v1+4 8e

p(G) < 5 (1.0.2)

If G is connected, in 1998 [29, Theorem 2] Yuan Hong improved (1.0.2) and showed
that

p(G) < V2e—n+1. (1.0.3)

In 2001 [30, Theorem 2.3], Hong et al. improved (1.0.3) and showed that

_dn—1+ V(dy +1)2 +4(2¢ — nd,,)

p(G) 5 (1.0.4)
In 2004 [40, Theorem 2.2], Jinlong Shu and Yarong Wu showed that
dy—1 dp+1)2+4((—1)(dy — d
o(G) 2 G-IV e LR A=) () - di) (1.0.5)

2

for 1 < ¢ < n. Moreover, they showed in [40, Theorem 2.5] that if a +b > d; + 1
then (1.0.5) improves (1.0.4) where a is the number of vertices with the largest degree
dy and b is the number of vertices with the second largest degree. In Section 3.2 we
present the following upper bounds for p(G) in terms of the degree sequence of G which
improves (1.0.5).

Let H, H' be two simple graphs with vertices sets V(H) N V(H)" = ¢. The sum
H + H' of H and H' is the graph obtained from H and H’ by adding an edge between
x and y for each pair (z,y) € V(H) x V(H’).

Theorem A. Let ¢ be a positive integer with 1 < ¢ < n. Then

de =14/ (d + 17 + 4571 (d, — dy)

p(G) < ¢ 5 :

Furthermore, if GG is connected then the above equality holds if and only if G is regular

or there exists 2 < t < £ and a regular graph H of order n—t+1 such that G = K; 1+ H.



This result also improves (1.0.4) since ¢, is exactly the upper bound in (1.0.4).

There are several applications of Theorem A. The spectral radius of the signless
Laplace matrix of G is denoted by ¢(G). Let A;; = d; +d; — 2 for each pair of adjacent
vertices i ~ j in G be the vertex degrees of the line graph G of G, and A; > Ay >
... > A, be a renumbering of them in non-increasing order. Then for 1 < ¢ < e, we

have

A= 1+ (A 12 +45770 A, - A))
2
with equality if and only if Ay = A, or there exists 2 <t < { such that e — 1 = A, =

At—l > At = Ae.

9(G) <=2+

Let 3 < j < n be the smallest integer such that Zle d; < (¢ —1). We prove in
Section 3.3 that
¢; =min{¢y | 1 <k < n}.

Turdn’s Theorem [42], proved in 1941, is a seminal result in extremal graph theory. In

its concise form it states that

n—dsw(G)

where d is the average vertex degree and w(G) is the clique number of G. In 1986, Wilf
[45] proved that

n— @) =%

There is also a lower bound for w(G) presented by ¢;

n

Tl—(bj

1
G —.
< w( )—|—3

In a series of papers, Bojilov and others have generalized the concept of an r-partite
graph. Let d(v) denote the degree of vertex v in G. They define a parameter, say 6(G),

to be the smallest integer r for which V(G) has an r-partition:
V(G) =V, UV,U...UV,, such that d(v) < n —n;, where n; = |V,
for all v € V; and for i = 1,2, ...,r. Bojilov et al. [6] proved that
0(G) < w(G)

and Khadzhiivanov and Nenov [32] proved that

n
n—d

<0(@).



Despite this bound, Elphick and Wocjan [21] demonstrated that

n

n——p(G) Z 0(G),

ie, n/(n—p(G)) > O(G) in some graphs. We prove in Section 4.5 that

n n 1
Q) Sn—g Oty

Brualdi and Hoffman proposed the problem of finding the maximum spectral radius
of a graph with precisely e edges in 1976 [3, p.438], and ten years later they gave a
conjecture in [9] that the maximum spectral radius of a graph with e edges is attained
by taking a complete graph and adding a new vertex which is adjacent to a correspond-
ing number of vertices in the complete graph. This conjecture was proved by Peter

Rowlinson in [38]. See [41, 24] also for the proof of partial cases of this conjecture.

The bipartite graphs analogue of the Brualdi-Hoffman conjecture was settled by
A. Bhattacharya, S. Friedland, and U.N. Peled [4] with the following statement: For
a connected bipartite graph G, p(G) < /e with equality iff G is a complete bipartite
graph. Moreover, they proposed the problem to determine graphs with maximum
spectral radius in the class of bipartite graphs with bipartition orders p and ¢, and e

edges. They then gave Conjecture B below.

Conjecture B. Let K(p, ¢, e) denote the family of e-edge subgraphs of the complete
bipartite graph K, , with bipartition orders p and ¢, and 1 < e < pg be integers. An
extremal graph that solves

max G
GeK(p,q,e) P( )

is obtained from a complete bipartite graph by adding one vertex and a corresponding

number of edges.

Conjecture B does not indicate that the adding vertex goes into which partite set of
a complete bipartite graph. For e > pg — min(p, ), let K, denote the graph which is
obtained from K, , by deleting pg — e edges incident on a common vertex in the partite
set of order no less than that of the other partite set. Figure 1.1 gives a such graph.

In 2010 [12], Yi-Fan Chen, Hung-Lin Fu, In-Jae Kim, Eryn Stehr and Brendon
Watts determined p(K ) and gave an affirmative answer to Conjecture B when e =

pq — 2. Furthermore, they refined Conjecture B for the case when the number of edges

4



5
K2,3

Figure 1.1: The graph K§’73.
is at least pg — min(p, q) + 1 to the following conjecture.

Conjecture C. Suppose 0 < pg — e < min(p,q). Then for G € K(p, q, e),
p(G) < p(Kp ).

Let H, H' be two bipartite graphs with given ordered bipartitions V(H) = X UY
and V(H') = X' UY’, where V(H) N V(H'") = ¢. The bipartite sum H & H' of H
and H’ (with respect to the given ordered bipartitions) is the graph obtained from H
and H' by adding an edge between = and y for each pair (z,y) € X x YU X' x Y.
For example, K;,q = Kp_pgteq—1 ® Npg—e,1 where N;, denotes the bipartite graph with
bipartition orders s,t and without any edges. We apply the idea of Theorem A to the
bipartite graphs and give Theorem D in Section 5.3.

Theorem D. Let GG be a simple bipartite graph with bipartition orders p and ¢, and
corresponding degree sequences d; > dy > --- > d, and d} > df) > --- > df]. For
1<s<pandl <t<gqlet Xy =dedy +3:71(d; — dy) + Y _\(d; — dj) and
Yoe= S0 (d; — dy) - Zz;ll(d; —d}). Then the spectral radius

Xt + \/Xf,t —4Y,
p(G) < ¢y = :

2

Furthermore, if G is connected then the above equality holds if and only if there exists
nonnegative integers ' < s and t’ < t, and a biregular graph H of bipartition orders

p — s" and ¢ — t' respectively such that G = Ky, & H.
Based on Theorem D, in Section 5.5 we solve Conjecture C, and Conjecture B under
the assumption that 0 < pg — e < min(p, q).

The following preprints and papers are included in this dissertation:
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1. Chia-an Liu and Chih-wen Weng, Spectral radius and degree sequence of a graph,
Linear Algebra Appl. 438 (2013) 3511-3515.

2. Chia-an Liu and Chih-wen Weng, Spectral radius of bipartite graphs, Linear
Algebra Appl. 474 (2015) 30-43.

3. Clive Elphick and Chia~an Liu, A (forgotten) bound for the spectral radius of a
graph, to appear in Taiwanese Journal of Mathematics DOI: 10.11650/tjm.19.2015.5393.

This dissertation is organized as follows.

In Chapter 2 we introduce definitions, terminologies and some results concerning
the graphs, matrices of graphs, and spectra of graphs.

In Chapter 3 we prove Theorem A.

In Chapter 4 several applications of Theorem A are introduced. Moreover, partial
result of Theorem A is written in a different statement.

In Chapter 5 we focus on the bipartite graphs. We prove Theorem D, and then
give affirmative answers to Conjecture C (and then Conjecture B under additional

assumptions).



Chapter 2

Preliminaries

In this chapter we review some definitions and basic concepts concerning the graphs,

spectra of graphs, and matrices.

2.1 Graphs

The following basic knowledge of graphs is referred to [43].

Definition 2.1.1. A graph G is a triple consisting of a vertex set V(G), an edge
set E(G), and a relation that associates with each edge two vertices (not necessarily

distinct) called its endpoints. The order of G is the number of vertices in G, i.e. |V (G)|.

Definition 2.1.2. A loop is an edge whose endpoints are equal. Multiple edges are
edges having the same pair of endpoints. A simple graph is a graph having no loops or
multiple edges. We specify a simple graph by its vertex set and edge set, treating the
edge set as a set of unordered pairs of vertices and writing e = wv (or e = vu) for an

edge e with endpoints u and v.

Definition 2.1.3. Let G be a loopless graph with vertex set V(G) and edge set E(G).
If vertex v € V(@) is an endpoint of e € E(G), then v and e are incident. The degree
of vertex v is the number of incident edges. The degree sequence of a graph is the list

of vertex degrees, usually written in nonincreasing order, as d; > dy > --- > d,, where

n = |V(G)|. G is regular if dy = d,,, and G is k-regular if d; = d,, = k.

7



Definition 2.1.4. The complement G of a simple graph G is the simple graph with
vertex set V(G) defined by uv € E(G) if and only if uv € E(G). A clique in a graph is

a set of pairwise adjacent vertices.

Definition 2.1.5. An independent set (or stable set) in a graph is a set of pairwise
nonadjacent vertices. A graph G is bipartite if V(G) is the union of two disjoint

(possibly empty) independent sets called partite sets of G.

Definition 2.1.6. Let GG be a bipartite graph with p and ¢ vertices in its partite sets
and corresponding degree sequences dy > dy > --- > dy, and d} > dy > --- > d;. We

say that G is bireqular if dy = d,, and d} = d.

Definition 2.1.7. The chromatic number of a graph G, written x(G), is the minimum
number of colors needed to label the vertices so that adjacent vertices receive different
colors. A graph G is k-partite if V(G) can be expressed as the union of k (possibly

empty) independent sets.

This generalizes the idea of bipartite graphs, which are 2-partite.

Definition 2.1.8. The line graph of a simple graph G, written G?, is the graph whose

vertices are the edges of G, with ef € E(G*) when e = uv and f = vw in G for some

u,v,w € V(Q).
u T
vy uv vy y

G G*

Figure 2.1: An example of a simple graph and its line graph.

Definition 2.1.9. The clique number of a graph G, written w(G), is the maximum

size of a set of pairwise adjacent vertices in G.

8



Definition 2.1.10. An isomorphism from a simple graph G to a simple graph H is a
bijection f : V(G) — V(H) such that uv € E(G) if and only if f(u)f(v) € E(H). We

say "G is isomorphic to H”, written G = H, if there is an isomorphism from G to H.

Proposition 2.1.11. [/3, Proposition 1.1.24] On any set of (simple) graphs, the iso-

morphism relation is an equivalence relation.

Definition 2.1.12. An isomorphism class of graphs is an equivalence class of graphs
under isomorphism relation.

When discussing a graph GG, we have a fixed vertex set, but our structural comments
apply also to every graph isomorphic to G. Our conclusions are independent of the

names (labels) of the vertices. Thus, we use the informal expression "unlabeled graph”

to mean an isomorphism class of graphs.

Definition 2.1.13. A path is a simple graph whose vertices can be ordered so that
two vertices are adjacent if and only if they are consecutive in the list. A cycle is a
graph with an equal number of vertices and edges whose vertices can be placed around
a circle so that two vertices are adjacent if and only if they appear consecutively along
the circle. The (unlabeled) path and cycle with n vertices are denoted by P, and C,,

respectively; an n-cycle is a cycle with n vertices.

P Cs

Figure 2.2: The graphs P5 and Cs.

Definition 2.1.14. A complete graph is a simple graph whose vertices are pairwise
adjacent; the (unlabeled) complete graph with n vertices is denoted by K,,. A complete
bipartite graph is a simple bipartite graph such that two vertices are adjacent if and only
if they are in different partite sets. When the sets have sizes s and ¢, the (unlabeled)

complete bipartite graph is denoted by K.

9



Ks Koy = Ks»

Figure 2.3: The graphs K5, K3, and K3 5.

Definition 2.1.15. The n-vertex star, denoted by S, is the complete bipartite graph
K -1 for n > 2. The n-vertex wheel W, is formed by connecting an isolated vertex

to all vertices of an (n — 1)-cycle, for n > 4.

Sr=Kig W

Figure 2.4: The graphs S; and W.

Definition 2.1.16. A walk is a list vy, €1, v1, . .., ex, vy of vertices and edges such that,
for 1 < i < k, the edge e; has endpoints v;_; and v;. A u,v-walk has first vertex u and

last vertex v; these are its endpoints.

Definition 2.1.17. A graph G is connected if it has a u, v-walk whenever u,v € V(G)

(otherwise, G is disconnected).

2.2 Graph spectrum

The background of graph spectrum mentioned in this section is referred to [8].

Definition 2.2.1. Let G be a simple graph. The adjacency matriz of G is the 0-1
matrix A = A(G) indexed by the vertex set V(G) of G, where A,, = 1 if and only if
zy € E(G).

10



Note that the degree of vertex v is the sum of the entries of A in the row indexed

by v.

Definition 2.2.2. Let GG be a simple graph and D be the diagonal matrix indexed
by the vertex set V(G) such that D,, is the degree of x. The Laplace matriz of G is

L(G) = L =D — A, and the signless Laplace matriz of G is Q(G) = Q = D + A.

Definition 2.2.3. The spectrum of a simple graph G is by definition the spectrum of
its adjacency matrix A, that is, its set of eigenvalues together with their multiplicities.
The spectral radius p(G) of G is the largest eigenvalue of its adjacency matrix A. Let

q(G) be the largest eigenvalue of the signless Laplace matrix Q(G) of G.

2.3 Nonnegative matrices

Let M = (m;;) be an n.xn matrix. We say that M is positive (resp. nonnegative) if
m;; > 0 (resp. m;; > 0) for all 7, 7. We say that M is reducible if the indices 1,2,--- ,n
can be divided into two disjoint nonempty sets u,49,--- ,7, and ji,j2, - ,J, Where
p+ v = n such that m;, ;, =0 fora =1,2,--- ;ppand § =1,2,---v. A square matrix
is called irreducible if it is not reducible. Simply considering the adjacent relation of a

graph and the definition of irreducible matrices, we have the following proposition.

Proposition 2.3.1. The adjacency matriz of a simple graph G is irreducible if and

only if G is connected. ]

The following lemma is a part of the Perron-Frobenius Theorem [35, Chapter 2].
Note that according to the Perron-Frobenius Theorem, the spectral radius of a sym-

metric nonnegative matrix is equal to its largest eigenvalue.

Theorem 2.3.2. If M is a nonnegative n X n matriz with spectral radius p(M) and
row-sums ri,Ta, ..., y, then

p(M) < max r;.

T 1<i<n
Moreover, if M is irreducible then the above equality holds if and only if the row-sums

of M are all equal.

11



2.4 (Quotient matrices

Let M be a real matrix described in the following block form

My - M,

M1 - My

where the diagonal blocks M, ; are square. Let b;; denote the average row-sum of M, ;,
i.e. b;; is the sum of entries in M, ; divided by the number of rows. Then B = (b;;)
is called a quotient matriz of M. If in addition for each pair ¢, j, M;; has constant
row-sum, then B is called an equitable quotient matrixz of M. The following lemma is

direct from the definition of matrix multiplication [8, Chapter 2].

Lemma 2.4.1. Let B be an equitable quotient matriz of M with an eigenvalue 6. Then

M also has the eigenvalue 6.

12



Chapter 3

Spectral Radius and Degree

Sequence of a Graph

In Chapter 3 we give a series of upper bounds in terms of the degree sequence of a
simple graph, which generalizes some previous results. Throughout this chapter let G
be a simple graph of n vertices and e edges with degree sequence d; > dy > --- > d,,.

Note that > | d; = 2e.

3.1 Known upper bounds for the spectral radius

p(G)

We shall review previous known results of upper bounds of spectral radius of graph

G in expression of part or all of the degree sequence.

In 1985 [9, Corollary 2.3], Brualdi and Hoffman showed the following result.
Theorem 3.1.1. Let k be the smallest positive integer such that e < k(k —1)/2. Then
p(G) <k-—1.

Furthermore, if G is connected then the above equality holds if and only if G is isomor-

phic to the complete graph K, of order n.

In 1987 [41], Stanley improved Theorem 3.1.1 and showed the following result.

13



Theorem 3.1.2. Let G be a simple graph. Then
—1++v1+8e
p(G) < VAR

If G is connected then the above equality holds if and only if G is isomorphic to K,.

If G is connected, in 1998 [29, Theorem 2] Yuan Hong improved Theorem 3.1.2 and

showed the following result.

Theorem 3.1.3. If G is connected then
p(G) <V2e—n+1

with equality holds if and only if G is isomorphic to the star Ky ,—1 or K,.

Definition 3.1.4. Let H, H' be two simple graphs with vertices sets V(H )NV (H) = ¢.
The sum H + H' of H and H' is the graph obtained from H and H’ by adding an edge

between x and y for each pair (z,y) € V(H) x V(H’).

In 2001 [30, Theorem 2.3], Hong et al. improved Theorem 3.1.3 and showed the

following result.

Theorem 3.1.5. Let G be a simple graph. Then

_dn—1+ V(dy, +1)2+ 4(2¢ — nd,)

p(G) 5

Furthermore, if G is connected then the above equality holds if and only if G is reqular or

there exists 2 < t < n and a reqular graph H of order n—t+1 such that G = K;_1+ H.

In 2004 [40, Theorem 2.2], Jinlong Shu and Yarong Wu improved Theorem 2.3.2 in
the case that A is the adjacency matrix of G' by showing the following result.

Theorem 3.1.6. Let ¢ be a positive integer with 1 < ¢ < n. Then

do— 1+ /(dg+1)2+4(0 — 1)(dy — dy)
p(G)S 1 1 5 e‘

Furthermore, if G is connected then the above equality holds if and only if G is reqular or

there exists 2 < t < { and a regqular graph H of order n —t+1 such that G = K, 1+ H.

14



Moreover, they also showed in [40, Theorem 2.5] that if p + ¢ > d; + 1 then
Theorem 3.1.6 improves Theorem 3.1.5 where p is the number of vertices with the
largest degree d; and ¢ is the number of vertices with the second largest degree. The

special case ¢ = 2 of Theorem 3.1.6 is reproved [18].

3.2 New upper bounds ¢, for p(G)

We give a series of sharp upper bounds of p(G) in Theorem 3.2.1 in terms of the

degree sequence of G which improves Theorem 3.1.1 to Theorem 3.1.6.

Theorem 3.2.1. Let ¢ be a positive integer with 1 < ¢ < n. Then

de =14/ (d+ 17 + 4571 (d, — dy)

p(G) < ¢p = 5

Furthermore, if G is connected then the above equality holds if and only if G is reqular or

there exists 2 < t < { and a regular graph H of ordern —t—+1 such that G = K;_1+ H.

Remark 3.2.2. This result improves Theorem 3.1.3 and Theorem 3.1.6 since ¢,, is
exactly the upper bounds in Theorem 3.1.3 and is at most the upper bound appearing
in Theorem 3.1.6. Additionally, generalized from this research, a similar upper bound
of the spectral radius in terms of the average 2-degree sequence of a graph is presented

in [31].

Proof of Theorem 3.2.1. Let the vertices be labeled by 1,2,...,n with degrees d; >
dy > --+ > d,, respectively. For each 1 < i < ¢ —1, let x; > 1 be a variable to be
determined later. Let U = diag(xy1,2s,...,24-1,1,1,...,1) be a diagonal matrix of
size n x n. Then U~! = diag(x7 ", 25", .., 20, 1,1, 1),

Let B = U~ 'AU. Notice that A and B have the same eigenvalues.

Let r1,79,...,7, be the row-sums of B. Then for 1 <i¢ < /¢ — 1 we have
.
k
i = _z _l = v _1 v
= S =S LS
1 1 -1
< di+— — (-2, 2.1
o +x1<zxk (f )> <3 )
k=1,k#1
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and for ¢ < j < n we have
/—1 n n /—1
rpo= D wmagt ) ek =) agp+ Y (o — ag
k=1 k=¢ k=1 k=1
/-1
< do+ (Z zp — (0 — 1)) . (3.2.2)
k=1

For1<i</¢—1let
d; — dg

=1+ > 1, (3.2.3)
b0+
where ¢, is defined in Theorem 3.2.1. Clearly that ¢, has the following quadratic
equation
-1
(de+1)2 = (de+ 1)(de + 1) = > (di — dy) = 0.
i=1
Therefore
S ap—(0=1) = (¢ +1) — (dp + 1) = ¢ — dy, (3.2.4)
k=1
and hencefor 1 <7< /¢ -1
-1 -1
zi(de + 1) Zdi+1+z$k— (—=1)=di+z; + Z T — (0 —2). (3.2.5)
k=1 k=1,k+i

By (3.2.5) for 1 <i < ¢ —1 we have

1 {—1
r< —di+ —<Zxk—€ 2)2%
1Y

Z

and by (3.2.4) for ¢ < j < n we have

/-1
Tj S dg—i— <Z(L‘k — (5— 1)) = qbg.

k=1

Hence by Theorem 2.3.2,

p(G) = p(B) < max{r;} < ¢y. (3.2.6)

1<i<n
The first part of Theorem 3.2.1 follows.

To prove the second part of Theorem 3.2.1, suppose that G is connected. The

sufficient condition of ¢, = p(G) follows from the fact that

dp— 1+ /(de+1)2+4(0 — 1)(dy — dy)
2

o <
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and applying the second part in Theorem 3.1.6.

To prove the necessary condition of ¢, = p(G), suppose ¢, = p(G). The connectivity
of G implies that A is irreducible, and so as B because U is a diagonal matrix with
positive entries on the diagonal. From (3.2.6) we have ¢, = max {r;} and then by the
second part of Theorem 2.3.2 and the irreducibility of B the Ti’_s_are all equal. It follows
that the equalities in (3.2.1) and (3.2.2) all hold. If d; = dy, then d; = ¢1 = ¢ = p(G),
and G is regular by the second part of Theorem 2.3.2. Suppose 2 < ¢t < ¢ such that
di—1 > dy = dp. Then x; > 1 for 1 <i <t—1Dby (3.2.3). Foreach 1 <i < /¢ —1, the
equality in (3.2.1) implies that a;; = 1 for 1 <k <t —1, k # 4. For each ¢ < j < n,
the equality in (3.2.2) implies that a;, = 1 for 1 < k < ¢ —1 and d; = dy. Hence
n—1=d;, =d;_, > dy = d, = d,. It follows that G = K;_1 + H for some regular graph

H of order n —t + 1.

We complete the proof. O

We give two examples which meet the equalities in Theorem 3.2.1.

Example 3.2.3. Consider the graph K obtained by deleting one edge from the com-
plete graph K5 on 5 vertices. Its degree sequence is d;y = d3 =5 — 1 and dy = d5 = 3,
so p(K5) = ¢4(K5 ) = 1 ++/7. Consider the wheel graph W, on 7 vertices. Its degree
sequence is d; = 7 — 1 and dy = dy = 3, s0 p(Wy) = ¢o(W7) = 1 +V/T.

K Wz

Figure 3.1: Two examples meet the equalities in Theorem 3.2.1.
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3.3 The sequence ¢, ¢o,..., 0,

The sequence ¢q, ¢, ..., ¢, is not necessarily non-increasing. i.e. the upper bound
¢e of p(G) is not always getting better. For example, the path P, of n vertices has
2=4dy =d,—o >d,_1 = d, =1, and it is immediate to check that if n > 6 then
Pr=0¢2=2<Vn—1=¢p_1=on.

Clearly that for all 1 < s <t < n, d, = d; implies that ¢, = ¢;. However, ¢, = ¢
dose not imply ds = d;. For example, in the graph with degree sequence (4,3,3,2,1,1),
one can check that ¢4 = ¢5 = 3 but dy > d5.

Figure 3.2: A graph with ¢, = ¢5 = 3, but dy > ds.
Recall that d; = ds11 implies @5 = @511 for 1 < s < n—1. The following proposition
describes the shape of the sequence ¢y, ¢o, ..., @p.

Proposition 3.3.1. Let 1 < s <n —1 and suppose ds > ds1. Then

Gs = Gsp1 Uff Zdi = s(s—1),

1=1

where = € {>,=}.

Proof. Recall that

, o1 Vo122 45570 d — d)
S: 2 .
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The proposition follows from the following equivalent relations step by step:

¢s i ¢s+1

s—1

& dy—deny + | (de+1)2+4) (d; — dy)

=1

= | (o + 1244 (di = doya)
=1

= (ds +1)% + 4i(di —dg) = 25— (ds+ 1) (3.3.1)

i=1

& (de+1)*+4) (di —dy) = 45> — 4s(ds + 1) + (dg + 1)

i=1

& Zdi = s(s—1),
i=1

where the relation in (3.3.1) is obtained from the second by taking square on both sides,
simplifying it, and deleting the common term dy — ds1. Notice that if 2s — (ds+1) < 0
in (3.3.1) then in the case that = is =, all statements fails, and in the case that > is
> the left hand side of (3.3.1) is at least ds + 1, which is greater than |2s — (ds + 1)|,

so the equivalent relation in the next step holds. Il

We have known that dy = d, 1 implies ¢s = ¢511. Combining with Proposition 3.3.1

we have the following results.
Lemma 3.3.2. (i) If Y] d; > s(s — 1) then ¢s > ¢si1.
(“) ]f Zf:l di < S(S - 1) then ¢s < d)s-‘rl‘

(i0i) ¢s = Ps1 iff ds = dsiq or i d; = s(s —1).

Corollary 3.3.3. Let n > 3 and { be the smallest integer such that Zle d; < L({—1).
Then for1 < j<n

¢j =min{¢; [ 1 <k <n}
if and only if d; = dy, or d; = dy_y with Y\"1 dy = (0 — 1)(£ — 2).
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Proof. For 1 < s < { — 1, from Lemma 3.3.2(i) we have ¢5 > ¢54q since >, d; >
s(s —1). For £ <t < n — 1, notice that >._,d; < t(t — 1) implies d; < t — 1,
and hence Y01 d; < t(t — 1) + (t — 1) < t(t + 1). From Lemma 3.3.2(ii) we have
G0 < Ppp1 < -+ < ¢y, since Zle d; < {(¢ —1). Hence ¢y = min{¢y | 1 < k < n}.

If 37 di = s(s — 1) then s — 1 > dy > dyyy, and S50 d; < s(s — 1)+ (s — 1) <
s(s+1). Hence 7 d; > s(s — 1) for 1 < s < ¢ — 2. The second part immediately

follows from Lemma 3.3.2(iii), and the result follows. O
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Chapter 4

Applications of the New Upper
Bounds ¢y

The best degree-based bounds ¢, for the spectral radius p(G) of graphs are obtained
in Chapter 3. We give applications of them in this chapter.

4.1 A different approach of ¢,

This chapter begins by demonstrating that a bound for the spectral radius dating
from 1983 is equivalent to min{¢, | 1 < ¢ < n}. In 1983, Edwards and Elphick proved

the following result in [19, Theorem 8] (and its corollary).

Theorem 4.1.1. The spectral radius
p(G)<y—1

where y = y(G) > 0 is defined by the equality
L)
yly—1) = dr+ (y— ly))dy. (4.1.1)
k=1
They also showed that 1 <y < n and that y is a single-valued function of G in [19,
Lemma 3].
This bound is exact for regular graphs because, we then have that
ly]

D d+(y—ly)d | =d

1
Y\
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where d is the common vertex degree.
The bound is also exact for various bidegree graphs. For example, let G be the star
graph K ,_1 on n vertices which has p(G) = v/n — 1. It is easy to show that y > 1.

Then the equation 4.1.1 becomes
yy—1)=m-D+ [yl -1+ —-[y])=n—-2+y,

soy=1++n—1.
Similarly let G be the wheel graph on n vertices (n > 4), which has p(G) = 1+ +/n.

It is straightforward to show that y = 2 + /n, so again the bound is exact.

The following theorem combines Theorem 3.2.1 and Theorem 4.1.1 which are over

30 years!

Theorem 4.1.2. Let a be the smallest integer such that Y ;_, d; < a(a —1). Then

dor1 =14 \/(dagr +1)2+ 427 (di — dasr)
2 )

Yy—1=¢op =
where y is defined in (4.1.1).

Proof. Observing the definition of y, we have |y| = a. Hence the equation (4.1.1) can

be written as
yy =1 = di+(y = a)das1. (4.1.2)
i=1
Note that if y is an integer then y = a. Hence in (4.1.2) the term (y — a)d, = (y —

a)d,1 = 0. Therefore

a

y* =yl +dasr) = Y (di = dayr) = 0.

=1

The result follows by directly solving the above quadratic equation. ]

4.2 Upper bounds for the spectral radius ¢(G) of

signless Laplace matrix of ¢

Let ¢(G) denote the spectral radius of the signless Laplace matrix of G. In this
section we investigate graph and line graph degree-based bounds for ¢(G) and then

compare them experimentally.
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The following well-known Lemma (see, for example, Lemma 2.1 in [11]) provides
an equality between the spectral radii of the signless Laplace matrix and the adjacency

matrix of the line graph of a graph.

Lemma 4.2.1. If G* denotes the line graph of G then

9(G) =2+ p(G").

Let A;; = d;+d;—2 for each pair of adjacent vertices i ~ j in G be the vertex degrees
of Gf, and Ay > Ay > ... > A, be a renumbering of them in non-increasing order.

Cvetkovi¢ et al. proved the following theorem using Lemma 4.2.1 and Theorem 2.3.2.

Theorem 4.2.2. (Theorem 4.7 in [17]) Let G be a simple connected graph. Then
q(G) <2+ A
with equality if and only if G is reqular or biregular.

The following lemma is proved in various ways in [40, 18, 34].

Lemma 4.2.3. Let G be a simple connected graph. Then

dy — 1+ +/(dy — 1) + 4d,
<
p(G) < 5

with equality if and only if G is reqular orn —1 =dy > dy = d,,.

Chen et al. combined Lemma 4.2.1 and Lemma 4.2.3 to prove the following result.

Theorem 4.2.4. (Theorem 3.4 in [14]) Let G be a simple connected graph. Then

_ _ 2
q(G)SHAQ 1+\/(A22 1)2 + 44,

with equality if and only if G is regular, or biregular, or the tree obtained by joining an

edge to the centers of two stars Kl,g—l with evenn, orn—1=d; =dy > d3 = d,, = 2.

Recall Theorem 3.2.1 as a lemma.
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Lemma 4.2.5. Let ¢ be a positive integer with 1 < £ < n. Then

de =14/ (de+ )2 +43757)(d; — d
p(G) < ¢ = ! +\/(£+ >2+ 2 iz é)'

Furthermore, if G is connected then the above equality holds if and only if G is reqular

or there exists 2 <t < { such thatn—1=d; =d;_1 > d; = d,,.

Combining Lemma 4.2.1 and Lemma 4.2.5 provides the following series of upper

bounds for the signless Laplacian spectral radius.

Theorem 4.2.6. Let ¢ be a positive integer with 1 < ¢ < e. Then

A= 14+ /(A + 12 +457HA - A)
2

9(G) < =2+ (4.2.1)

Furthermore, if G is connected then the above equality holds if and only if Ay = A, or

there exists 2 <t </ such thate — 1= Ay = A1 > A = A..

Proof. Since G is simple, G is simple. Hence it is a direct result of Lemma 4.2.1 and

Lemma 4.2.5. ]

Remark 4.2.7. Note that Theorem 4.2.6 generalizes both Theorem 4.2.2 and Theo-
rem 4.2.4 since those bounds are precisely ¥ and ¥, in (4.2.1) respectively.
We list all the extremal graphs with equalities in (4.2.1) in the following. From
Theorem 4.2.2 the graphs with ¢(G) = 14, i.e. A = A, are regular or biregular.
From Theorem 4.2.4 the graphs with ¢(G) < ¥; and ¢(G) = 1, ie. e —1 =
A1 > Ay = A, are the tree obtained by joining an edge to the centers of two stars
Ky 2y with even n (where Figure 4.1 is an example of such graph with n = 6), or

n—1=di=dy >d3=d, =2.

<

Figure 4.1: The tree obtained by joining an edge to the centers of two stars K .
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The only graph with ¢(G) < min{¢;|i = 1,2} and ¢(G) = ¢35, ie. m—1= A, =

Ag > Az = A, is the 4-vertex graph Kff:g obtained by adding one edge to K 3.

Figure 4.2: The graph Kff?).

We now prove that no graph satisfies ¢(G) < min{¢;|1 < i < k—1} and ¢(G) = %
where e > k > 4. Let GG be a counter-example such that e—1 = Ay = Ap_1 > A = A,
Since Az = e — 1 there are at least 3 edges incident to all other edges in G. If these
3 edges form a 3-cycle then there is nowhere to place the fourth edge, which is a
contradiction. Hence they are incident to a common vertex, and G has to be a star

graph. However a star graph is biregular so ¢(G) = v, which completes the proof.

Nikiforov [37] has recently strengthened various upper bounds for ¢(G) with the

following theorem.

Theorem 4.2.8. If G is a graph with n vertices, e edges, mazximum degree di and

mintmum degree d,,, then

1
¢(G) < min <2d1, 5 <d1 4 2d, — 14+ /(d1 + 2d, — 1)2 + 166 —8(n — 1 + dl)dn)> .

Equality holds if and only if G is regular or G has a component of order dy +1 in which

every vertex is of degree dy or d,, and all other components are d,-reqular.

It is straightforward to compare the above bounds experimentally using the named
graphs and LineGraph function in Wolfram Mathematica. Theorem 4.2.8 is exact for
some graphs (eg. Wheels W, for n > 5) for which Theorems 4.2.4 and 4.2.6 are inexact,
and Theorems 4.2.4 and 4.2.6 are exact for some graphs (eg. complete bipartite graphs
K, , with 2 < min(p, ¢)) for which Theorem 4.2.8 is inexact. Tabulated below are the
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numbers of named irregular graphs on 10, 16, 25 and 28 vertices in Mathematica and

the average values of ¢ and the bounds in Theorems 4.2.8, 4.2.4 and 4.2.6.

n irrregular graphs ¢(G) Theorem 4.2.8 Theorem 4.2.4 Theorem 4.2.6

10 29 9.3 10.0 10.3 9.8
16 48 10.3 11.2 11.5 11.0
25 25 11.5 13.4 13.1 12.6
28 21 11.2 12.6 12.7 12.2

Theorem 4.2.4 gives results that are broadly equal on average to Theorem 4.2.8, and
Theorem 4.2.6 gives results which are on average modestly better. This is unsurprising

since more data is involved in Theorem 4.2.6 than in the other two theorems.

4.3 A lower bound for ¢(G)

Elphick and Wocjan [21] defined a measure of graph irregularity, v = v(G), as

follows:
_ny d;

7

where v > 1 with equality only for regular graphs.

It is well known that ¢(G) > 2p(G) and Hofmeister [28] has proved that p(G)? >
(3= d?)/n, so it is immediate that

2(G) > 20(G) = 2V

n

Liu and Liu [33] improved this bound in the following theorem, for which we provide

a simpler proof using Lemma 4.2.1.

Theorem 4.3.1. Let G be a graph with irreqularity v and signless Laplace spectral
radius q(G). Then

dev
G)>—.
9(G) = —
This is exact for complete bipartite graphs.

Proof. Let G* denote the line graph of G. From Lemma 4.2.1 we know that ¢(G) =
2+ p(G*) and it is well known that |V (G*)| = e and |E(GY)| = (3. d?/2) —e. Therefore

_ 2|B(G)] _ 2 (Y d} o yd? dev
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For the complete bipartite graph K,

(G =s+1t= =0

4.4 Lower bounds for the clique number

Turdn’s Theorem [42], proved in 1941, is a seminal result in extremal graph theory.

In its concise form it states that

n—dgw(G)

where d is the average vertex degree.

Edwards and Elphick [19] proved the following lower bound for the clique number.
Theorem 4.4.1. Let G be a simple graph of n vertices. Then

n—y(G)+1

where y(G) is defined in (4.1.1).

In 1986, Wilf [45] proved that

Note, however, that
n

n—y(G)+1

since for example n+w = 2.13 for K7y, and n—Ly—l—l = 3.1 for K33 4.

£ w(@),

Nikiforov [36] proved a conjecture due to Edwards and Elphick [19] that:

Theorem 4.4.2. Let G be a simple graph with e edges. Then

2e

26——,0(G)2 < w(G).

Experimentally, bound in Theorem 4.4.2 performs better than bound in Theo-

rem 4.4.1 for most graphs.
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4.5 Generalized r-partite graphs

In a series of papers, Bojilov and others have generalized the concept of an r-partite
graph. They define a parameter, say 6(G), to be the smallest integer r for which V(G)

has an r-partition:
V(G) =V, UVy,U...UV,, such that d(v) <n —n;, where n; = |V,

forallv e V; and fori =1,2,....r.

Note that 0(G) < w(G) in [6], and Khadzhiivanov and Nenov [32] proved that

n

n—d

<0(Q).

Despite this bound, Elphick and Wocjan [21] demonstrated that

n —p(G)

ie,, n/(n—p(G)) > O(G) in some graphs.

Z 0(G),

However, it is proved below in Corollary 4.5.5 that:

n n 1
<

n—p(G) —n=—y(G)+1

Definition 4.5.1. If H is any graph of order n with degree sequence dy (1) > dy(2)

Y

... > dg(n), and if H* is any graph of order n with degree sequence dy+(1) > dg«(2) >

... > dg~(n), such that dy (1) < dg-(7) for all ¢, then H* is said to dominate H.

Erdos [22] proved that if G is any graph of order n, then there exists a graph G*
of order n, where x(G*) = w(G) = r, such that G* dominates G and G* is complete

r-partite.

Theorem 4.5.2. If G is any graph of order n, then there exists a graph G* of order

n, where w(G*) = 0(G) = r, such that G* dominates G, and G* is complete r-partite.

Proof. Let G be a generalized r-partite graph with 0(G) = r and n; = |V;| for 1 < i <,

and let G* be the complete r-partite graph K, ... Let d(v) denote the degree of
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vertex v in G and d*(v) denote the degree of vertex v in G*. Clearly x(G*) = w(G*) = r,

and by the definition of a generalized r-partite graph,
d*(v) =n—n; > d(v)
for all v € V; and for 1 < ¢ < r. Therefore G* dominates G. O

Recall that y(G) is defined in Theorem 4.1.1.

Lemma 4.5.3. (Lemma 4 in [19]) Assume G* dominates G. Then y(G*) > y(G).

Theorem 4.5.4. Let G be a simple graph of n vertices. Then

n 1

Proof. Let G* be any graph of order n, where w(G*) = 6(G) such that G* dominates
G. (By Theorem 4.5.2 at least one such graph G* exists.) Then, using Lemma 4.5.3

and Theorem 4.4.1,

n n 1 1 1
< <w(G)+=-=0G)+ - <w(G)+ =.
n—y(G)+1 " n—y(G*)+1 o )+3 ( )+3_w( )+3
[
Corollary 4.5.5. Let G be a simple graph of n vertices. Then
n 1
—— < 0(G) + .
n— p(G) <0(G)+ 3
Proof. Immediate since p(G) < y(G) — 1. O
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Chapter 5

Spectral Radius of Bipartite Graphs

Brualdi and Hoffman proposed the problem of finding the maximum spectral radius
of a graph with precisely e edges in 1976 [3, p.438], and ten years later they gave a
conjecture in [9] that the maximum spectral radius of a graph with e edges is attained
by taking a complete graph and adding a new vertex which is adjacent to a correspond-
ing number of vertices in the complete graph. This conjecture was proved by Peter

Rowlinson in [38]. See [41, 24] also for the proof of partial cases of this conjecture.

The next problem is then to determine graphs with maximum spectral radius in the
class of connected graphs with n vertices and e edges. The cases e < n + 5 when n is
sufficiently large are settled by Brualdi and Solheid [10], and the cases e — n = (;) —1
by F. K. Bell [1].

The bipartite graphs analogue of the Brualdi-Hoffman conjecture was settled by
A. Bhattacharya, S. Friedland, and U.N. Peled [4] with the following statement: For
a connected bipartite graph G, p(G) < /e with equality iff G is a complete bipartite
graph. Moreover, they proposed the problem to determine graphs with maximum
spectral radius in the class of bipartite graphs with bipartition orders p and ¢, and e

edges. They then gave Conjecture 5.1.1 below.

5.1 Conjectures B and C

From now on the graphs considered are simple bipartite. Let K(p, g, e) denote the
family of e-edge bipartite graphs with bipartition orders p and q.
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Conjecture 5.1.1. Let p,q,e be positive integers with 1 < e < pq. An extremal graph
that solves

max G
GeK(p,q,e) p( )

is obtained from a complete bipartite graph by adding one vertexr and a corresponding

number of edges.

Moreover, in [4, Theorem 8.1] Conjecture 5.1.1 was proved in the case that e = st—1
for some positive integers s,t satisfying 2 < s <p <t <qg<t+(t—1)/(s —1). They
also indicated that the only extremal graph is obtained from Kj; by deleting an edge.

Conjecture 5.1.1 does not indicate into which partite set of a complete bipartite
graph the adding vertex goes. For e > pq — max(p,q) (resp. e > pg — min(p,q)), let
°Kpq (resp. K ) denote the graph which is obtained from K, by deleting pg — e
edges incident on a common vertex which belongs to the partite set of order no larger
than (resp. no less than) that of the other partite set. Then the extremal graph in

e

Conjecture 5.1.1 is either st or K¢y for some positive integers s < p and t < ¢ which

meet the constraints of the number of edges. Figure 5.1 gives two such graphs.

5 _ 5 5
K53 = "Kay3 Ky

Figure 5.1: The graphs K34, °Ky3 and Ky,

In 2010 [12], Yi-Fan Chen, Hung-Lin Fu, In-Jae Kim, Eryn Stehr and Brendon
Watts determined p(Kj ) and gave an affirmative answer to Conjecture 5.1.1 when
e = pq — 2 and min(p, q) > 2. Furthermore, they refined Conjecture 5.1.1 for the case

when the number of edges is at least pg — min(p, ¢) + 1 to the following conjecture.

Conjecture 5.1.2. Let p,q,e be positive integers with 0 < pqg — e < min(p,q). Then
p(G) < p(K3 ).

p.q
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This chapter is organized as follows. Known results that we need are provided in
Section 5.2. Theorem 5.3.3 in Section 5.3 presents a series of sharp upper bounds of
p(G) in terms of the degree sequence of G. Some special cases of Theorem 5.3.3 are
further investigated in Section 5.4 with which Corollary 5.4.2 is the most useful in this
paper. We prove Conjecture 5.1.2 as an application of Corollary 5.4.2 in Section 5.5.
Finally we propose another conjecture which is a general refinement of Conjecture 5.1.1

in Section 5.6.

5.2 Known results

Basic results are provided in this section for later use.

Lemma 5.2.1. ([4, Proposition 2.1]) Let G be a simple bipartite graph with e edges.
Then

p(G) < Ve
with equality iff G is a disjoint union of a complete bipartite graph and isolated vertices.

Let G be a simple bipartite graph with bipartition orders p and ¢, and degree
sequences dy > dy > -+ >d,and d} > dy > --- > d; respectively. We say that G is
biregular if d, = d, and d} = dj,.

Lemma 5.2.2. (/2, Lemma 2.1]) Let G be a simple connected bipartite graph. Then

p(G) <V did,

with equality iff G is bireqular.

5.3 A series of sharp upper bounds ¢;; of p(G)

We give a series of sharp upper bounds of p(G) in terms of the degree sequence
of a bipartite graph G in this section. The following set-up is for the description of

extremal graphs of our upper bounds.
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Definition 5.3.1. Let H, H' be two bipartite graphs with given ordered bipartitions
V(H)=XUY and V(H') = X'UY’, where V(H)NV (H') = ¢. The bipartite sum H®H'
of H and H' (with respect to the given ordered bipartitions) is the graph obtained from

H and H' by adding an edge between = and y for each pair (z,y) € X x YU X' x Y.

Example 5.3.2. Let N,; denote the bipartite graph with bipartition orders s,¢ and
without any edges. Then for p < ¢ and e meeting the required constraints, °K,, =

e J—
Kp—1,g-pgre ® Nipg—e and K, = Kp_pgieq—1 D Npg—e,1-

Theorem 5.3.3. Let G be a simple bipartite graph with bipartition orders p and q,
and corresponding degree sequences di > dy > --- > d, and d} > dy > .- > df].
For1<s<pand1<t<gq,let Xoy = dod, + 37/ (d; — d,) + Z;;(Cl; —d}) and

Yoo =301 (di —dy) - Y21 (d; — dy). Then

j=1
s A \/XSQ,t —4Y,,

2

P(G) < o=

Furthermore, if G is connected then the above equality holds if and only if there exists
nonnegative integers s’ < s and t' < t, and a bireqular graph H of bipartition orders

p— s and q —t' respectively such that G = Kgy & H.

Before proving Theorem 5.3.3, we mention some simple properties of ¢, ;.

Lemma 5.3.4. (i) ¢11 = \/d1d}.
(ii) If di = ds then ¢y = dsy. If d) = d; then ¢gp = bs.
s—1 t—1
ot = max (Z(di —dy), ) (d; — d;)) (5.3.1)
i=1 j=1

with equality iff d,d; = 0. Moreover, if the equality in (5.3.1) holds then ¢2, = e.

(iv) Qb;l,t - Xs,tﬁbit +Y,:=0.
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Proof. (i), (ii), (iv) are immediate from the definition of ¢;. Clearly dsd; = 0 if and

only if
s—1 t—1
e (300 300 ) =
i=1 j=1
Hence (iii) follows by using that X,, > 3% (d; — d,) + Z ( — d}) with equality

iff dsd, = 0 to simplify ¢ .
]

We set up notations for the use in the proof of Theorem 5.3.3. For 1 < k < s —1,

let

d/(dk - dS) . -1
R > SN - ),
Ty = S >oisi(di — dy) ! ' (5.3.2)

1 if 2, =021 (di — dy),
and for 1 </ <t —1let

dy(dy — di)

ie 9 t—1 '
v ) T o gy e Zml ) (5.3.3)
2 S5 e j 3.
1, if 92, = Y501 (d) — dy).

Note that xy,2;, > 1 because of Lemma 5.3.4(iii). The relations between the above

parameters are given in the following.

Lemma 5.3.5. (i) Suppose ¢2, > > " 1(dg —d). Then
t—1 s—1
(d d) + Z (d), —d}) + Z(xk - 1)d,~) = gbit
i h=1 k=1
for1 <i1<s—1, and
— s—1
dody+ Y (dy =)+ (w5 — 1)ds = ¢,
h=1 k=1

(i) Suppose ¢2, > 37,7\ (d; — d;). Then

s—1 t—1

1

7 (dsd} +) (dy—d) + > () — 1)d;-> = ¢7,
h=1 =

for1<j<t-—1, and

s—1 t—1
dody + Y (dyp —dy) + > (2} — 1)d; =
h=1 /=1
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Proof. Referring to (5.3.2) and Lemma 5.3.4(iv),
1 s—1
—(dd’+2d’ +Z or — 1)d )
i —1
1
2 =S (dy — dy) + di(di — dy)
t

t—1 -1 s—1
X (qﬁ,t (dz‘di + > (d; — di)) =D (dy—dy) p (dy - ds))
h=1

h=1 k=1
= ¢§,t
for1<i<s—1,and

t—1 s—1
dody + Y (dy, —dp) + Y (= 1)dy

h=1 k=1

1 t—1 s—1
= — ds d’ + d’ (dy —

¢§,t - k:i(dk’ - dS) ( ( Z > h=1 ; )

2
s,t*

Hence (i) follows. Similarly, referring to (5.3.3) and Lemma 5.3.4(iv) we have (ii). O

Let U ={u; |1 <i<p}andV = {v; | 1 <j < ¢} be the bipartition of G such that
d; is the degree of u; for 1 <i <p, d} is the degree of v; for 1 < j <¢q,dy > dy--- > d,
and d] > dy--- > df]. For 1 <14, j <p, let n;; denote the numbers of common neighbors
of u; and uy, i.e., n;; = |G(w;) N G(u;)| where G(u) is the set of neighbors of the vertex
u in G. Similarly, for 1 <4, j < ¢ let nj; = |G(v;) N G(v;)|. Since G is bipartite, the

adjacency matrix A and its square A? look like the following in block form:

e 0 B 42 BBT 0 _ (nij)1<ij<p 0 |
BT 0 0 BTRB 0 (n;j)lgi,qu

(5.3.4)

We have the following properties of n;; and nj;.

Lemma 5.3.6. (i) For1<i<pand1<j<gq, ng;=d; and n; = d;.
(it) For 1 <i,j <p, n;; <d; with equality if and only if G(u;) O G(u;).
(iii) For 1 <i,j < q, nj; < d} with equality if and only if G(v;) 2 G(v;).

(iv) For1<i<p,

4 t—1
Yonw= Y &< (di—t+D)di+Y dy
k=1 J: uv; €E(G) h=1
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(v) For1<j<gq,

q s—1
Yonl= > di<(di—s+1)d+ > dh.
k=1 i uv;€EE(G) h=1

Proof. (i)-(iii) are immediate from the definition of n;;. Counting the pairs (uy,v;)
such that v; € G(u;) N G(uy) in two orders (j, k) and (k, j), we have the first equality
in (iv). The second inequality of (iv) is clear since d; is non-increasing. (v) is similar

to (iv). O
The proof of Theorem 5.3.3

Proof. Clearly p(A)* = p(A?). In the following we will show that p(A*) < ¢2,. Let

_— : / / /
U—dlag(thQJ'H 7xs—1717"' ,171‘1,3’}2,"' 7$t71717'“ 71>

~ ~~ “ N ~~

P q

be a diagonal matrix of order p + ¢. Let C' = U~'A?U. Then A? and C are similar and
with the same spectrum. Let rq, <« 7,7, -+ - ,r; be the row-sums of C. Referring to

(5.3.4), we have

s—1 P

1 & R
xl;nk+xl;(a€k Jnig for 1<i<s ( )

s—1 P P s—1

r, = Zxkn,k + ank = ank + Z(mk — Dy for s<i<p; (5.3.6)
k=1 k=s k=1 k=1
-1

q
/ me / 1 /
Tpo= Zg%ﬁZ;w
=1 "7 =t 7
q

t—1
1 1

= = Zn;g + o Z(qu —1nj, for 1<j5<t—1; (5.3.7)
i e=1 =1

t—1 q q t—1
r;- - ZIW;K + ane = ané + Z(x’z — l)n;[ for t<j<gq. (5.3.8)
=1 o=t =1 =1

a=1

If ¢2, = >2"1(dy — ds) then z = 1 for 1 < k < s—1 by (5.3.2) and ¢?, = e by
Lemma 5.3.4(iii). Hence (5.3.5) and (5.3.6) become

p
N Y= Y di<e=¢, (5:39)
k=1

J: u;v;€E(G)
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for 1 <4 < p. Suppose @2, > Yo~ Y(dy — dy). Referring to (5.3.5) and (5.3.6), for

1<1<s—1
1 t—1 1 s—1
Ti h=1 T
and for s <7 <p
t—1 s—1
re < (di—t+)d 4+ dy+ Y (wp— 1)d; (5.3.11)
h=1 k=1
t—1 s—1
< (dy—t+ DA+ Y d+ Y (= 1)ds = 62, (5.3.12)
h=1 k=1

where the inequalities are from Lemma 5.3.6(ii)(iv) and the non-increasing of degree
sequence, and the equalities are from Lemma 5.3.5(i). Thus, r; < qbz’t for 1 <1 < p.
Similarly, referring to (5.3.7), (5.3.8), Lemma 5.3.6(iii)(v), the non-increasing of degree
sequence, and Lemma 5.3.5(ii) we have r} < @7, for 1 < j < ¢. Hence p(A?) = p(C) <

it by Theorem 2.3.2.

To verify the second part of Theorem 5.3.3, assume that GG is connected. We prove
the sufficient conditions of p(G) = ¢s4. If s = 0 and ¢’ = 0 then G is biregular. By
Lemma 5.2.2 and Lemma 5.3.4(i)( \/d17 ¢st. Suppose ' = 0and t' > 1.
Thendy =d,and p=d; =dj, > dj, |, = d;. We take the equatable quotient matrix F

of A with respect to the partition {{1,...,p}, {p+1,...,p+t'},{p+t'+1,... ,p+q}}.

Hence
0 t d,—1t
E= p 0 0
d, 0 0

The eigenvalues of F are 0 and £+/dyd, + '(p — d;) = +ds,. By Lemma 2.4.1, ¢, is
also an eigenvalue of A. Since p(G) < ¢ has been shown in the first part, we have
p(G) = ¢s4. Similarly for the case s’ > 1 and t' = 0. Suppose s’ > 1 and ¢’ > 1. Then
q=d =dy >dyy1 = dyand p =d} = d, > d,, = d,. We take the equatable

quotient matrix F of A with respect to the partition {{1,...,s'},{s’+1,....p},{p+
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L...,p+t'} {p+t+1,...,p+q}}. Hence

Then the eigenvalues of F' are

Xs,t + \/ st,t - 4}/87t
+ .

2

We see ¢, is an eigenvalue of F, and by Lemma 2.4.1 ¢, is also an eigenvalue of A.

Hence p(G) = ¢5;. Here we complete the proof of the sufficient conditions of ¢s; =
p(G).

To prove the necessary conditions of p(G) = ¢+, suppose p(G) = ¢ Then by
Theorem2.3.2ri:r9: giforlgigpandlgqu. Let s < s and ¢ < ¢t be
the smallest nonnegative integers such that dyy, = dy and d}, , = d, respectively. We

prove either dy = d, or ¢ = dy = dy > dy4+1 = d, in the following. The connectedness

of G implies dd; > 0 so that

by Lemma 5.3.4(iii). Hence the equalities in (5.3.10) to (5.3.12) all hold. The choose
of s and the equalities in (5.3.12) imply that dy41 = ds = d,,. If s = 0 then d; = d,.
Suppose ' > 1. For 1 < ¢ < ¢/, since d; > d, and gbzt > Zz;i(da — ds), we have
x; > 1 by (5.3.2). The equalities in (5.3.10) imply n; = d; and then G(uy) 2 G(u;) by
Lemma 5.3.6(ii) for 1 < k < s’ and 1 < i < s — 1. Similarly the equalities in (5.3.11)

imply G(ug) 2 G(u;) for 1 <k < s and s <i < p by Lemma 5.3.6(ii). That is,
G(u) = G(ug) = - = G(uy) 2 G(u;) for §'+1<i<p.

Due to the connectedness of G, d; = dy = ¢g. The result follows. Similarly, either
dy = d,orp=dy =d, >dy, , = d,. Clearly that the graphs with those degree

sequences are Ky »+ H for some biregular graph H of bipartition orders p—s’ and ¢—t'
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respectively. Here we complete the proof for the necessary conditions of ¢s; = p(G),

and also for Theorem 5.3.3. ]

Remark 5.3.7. Other previous results shown by the style of the above proof can be

found in [40, 34, 13, 31]. Similar earlier results are referred to [9, 10, 41, 29, 30].

5.4 A few special cases of Theorem D

In this section we study some special cases of ¢,; in Theorem 5.3.3. We follow
the notations in Theorem 3.3. As ¢1; = 1/did}] in Lemma 5.3.4(i), Theorem 5.3.3
provides another proof of p(G) < \/m in Lemma 5.2.2. Applying Theorem 5.3.3
and simplifying the formula ¢, in cases (s,t) = (1,¢) and (s,t) = (p, 1), we have the

following corollary.

Corollary 5.4.1. (i) p(G) < ¢14= (/e — (¢ — d1)d),.

(it) p(G) < p1 = /e = (p = dy)dy.

[
We quickly observe that
Xpq = dpd, + (e — pdy) + (e = qd}) = 2e — (pdy, + qd;, — d,d;,) (5.4.1)
and
Yoq = (e —pdy)(e — qdy). (5.4.2)
Hence we have the following corollary.
Corollary 5.4.2.
2e — (pdy, + qd}, — dpd,) + \/(pdp + qd}, — dpd},)?* — Adyd;, (pq — €)
O

By adding an isolated vertex if necessary, we might assume d, = 0 and find ¢, , =
Ve from Corollary 5.4.2. Hence Theorem 5.3.3 provides another proof of p(G) < /e

in Lemma 5.2.1.
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5.5 Proof of Conjecture C

When e, p, q are fixed, the formula

2 — (pdy + ady — dyd,) + [ (pdy + ad, — dyd;)? — ddyd(pg — )

Oyl ) = )

(5.5.1)
obtained in Corollary 5.4.2 is a 2-variable function. The following lemma will provide

shape of the function ¢, ,(d,, d,).

Py Tq

Lemma 5.5.1. I[f1 < d; <p-—1and qd’ < e then

a¢p q(dpad;)

< 0.
ad,

Proof. Referring to (5.5.1), it suffices to show that

0

/ / / —
o, <ze (pd, + qd., — d,d)) +\/pd + qdy — dpd;)* — 4d,ydy (pg e))

(pdy + qd;, = dyd,)(p — d;,) —2d,(pq — e)
\/ (pdy, + qdi, = dpd;))? — 4d,d (pg — e)

=—p+d,+ (5.5.2)

is negative. If ¢d; = e then (5.5.2) has negative value 2(d; —p). Indeed if the numerator
of the fraction in (5.5.2) is not positive then (5.5.2) has negative value. Thus assume

that it is positive and qd;, < e. From simple computation to have the fact that

2

((pdp + qd; — dpd’) - 2d' ) — ((pdp + qd; — dpal;)2 — 4dpdf1(pq — e))

_ Adi(pg—e)
(p — dy)?

we find that the fraction in (5.5.2) is strictly less than p — d;, so the value in (5.5.2) is

p—d
(qd, —€) <0,

q

negative. ]

Remark 5.5.2. From Example 5.3.2, if p < ¢ then the graphs °K, , = Kp_1 4—pgte +

Nipg—e and K; = Kppgreq—11 Npg—e satisfy the equalities in Theorem 5.3.3. Hence

P “Kpq) = dpglq —pg+e,p—1)and p(K; ) = ¢pe(qg — 1,p — pq + €); the latter is

expanded as

p(KE.) = \/6’+\/€2 4(q — 1)(p — pq +¢)(pg — ¢) (55.3)

p.q 2

by (5.5.1).
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Lemma 5.5.3. Suppose 0 < pg—e <min(p,q), 1 <d, <q—1,1<d, <p—1and
dy+d,=e—(p—1)(g—1). (5.5.4)

Then

Pp.q(dp, dy) < p(K3,)-

Proof. From symmetry, we assume p < ¢. Referring to (5.5.1) and (5.5.3), we only need

to show that

e — (pdy + qd;, — dpd,) + \/(pdp + qd}, — dyd})? — 4d,d; (pg — e) (5.5.5)

<Ve?—4(q—1)(p—pg+e)(pg — e). (5.5.6)
From (5.5.4), we have
e — (pdy + qdy — dpdy) = (p—dy — 1)(g —d, = 1) 2 0 (5.5.7)

and

(dp + dp)? — [2d, — (dp + d})?
4
(e—(=D(q=1))2=12(q=1) = (e—(p—1(qg— 1))
1

=(¢—1)(p —pq +e). (5.5.8)

dyd,, =

>

Hence the equation (5.5.5) is at most

e — (pd, + qd,, — dyd,) +\/pd +qd) — dpd))* — 4(q — 1)(p — pqg +€)(pg —€). (5.5.9)

Set a = e — (pd, + qd, — dpd;) and b = 4(q — 1)(p — pq + €)(pq — ¢). Note that a > 0

by (5.5.7) and b > 0 by the relations between p, ¢, e. Using the fact that

Ve2—b—+/le—a)?—b>Ve2—\/(e—a)2 =a (5.5.10)

from the concave property of the function y = \/z, we find the value in (5.5.9) is at

most that in (5.5.6) and the result follows. O

The proof of Conjecture 5.1.2
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Proof. By Theorem 5.3.3, p(G) < ¢p4(dp, d;). Note that the assumption 0 < pg —e <
min(p, ¢) implies 1 <d, <g—land 1 <d, <p—1.Lete,=e—(p—1)(g—1)—d,.

Clearly that 1 < e, < d, and qd;, < e. By Lemma 5.5.1, ¢, 4(d,, d;) < ¢p4(ep, d;,). With

Py “q

ep in the role of d), in Lemma 5.5.3, we have ¢, (e, d;) < p(K; ). This completes the

proof. ]

5.6 Concluding remark

We give a series of sharp upper bounds for the spectral radius of bipartite graphs in
Theorem 5.3.3. One of these upper bounds can be presented only by five variables: the
number e of edges, bipartition orders p and ¢, and the minimal degrees d,, and d;, in the
corresponding partite sets as shown in Corollary 5.4.2. We apply this bound when three
variables e, p, q are fixed to prove Conjecture 5.1.2; a refinement of Conjecture 5.1.1 in
the assumption that 0 < pg — e < min(p,q). To conclude this paper we propose the

following general refinement of Conjecture 5.1.1.

Conjecture 5.6.1. Let G € K(p,q,€e). Then

P(G> < P(K:,t>

for some positive integers s < p and t < q such that 0 < st — e < min(s, t).

We believe that the function ¢, ,(d,, d;) in (5.5.1) will still play an important role
in solving Conjecture 5.6.1. Two of the key points might be to investigate the shape of
the 4-variable function ¢, 4(d,, d;,) with variables p, ¢, d,,, d;, and to check that for which
sequence s, t, dg, d, such that s <p and t < ¢ and 0 < st — e < min(s,t), there exists
a bipartite graph H with e edges whose spectral radius satisfying p(H) = ¢s.(ds, d}),
where s,t are the bipartition orders of H and ds and d; are corresponding minimum

degrees.
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