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Abstract

Let v be a vertex in a simple graph G. The average 2-degree of v is
the average of degrees of vertices adjacent to v. The applications of the
degree and average 2-degree sequences on the upper bounds for the maximum
eigenvalue of Laplacian matrix of a graph is studied by many authors. The
graph (' is called pseudo k-regular if each vertex in GG has average 2-degree
k. We prove that if G is pseudo k-regular then k is integral. Moreover, all
pseudo regular trees are given in this thesis. We also consider the case when
the maximum degree of G is k? — k, and give some basic results. In the end,
we give more results of pseudo 3-regular graphs. And characterize all the

pseudo 3-regular graph within ten vertices but not regular.

Keywords: Graph, adjacency matrix, Laplacian matrix, degree, average

2-degree, pseudo k-regular.
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Chapter 1

Introduction

Let G be a graph with vertex set VG = {1,2,...,n} and edge set EG.

Let d; be the degree of the vertex : € VG, defined as follows:
d; :=|G1(3)],
where G (i) means the set {j € VG | ji € EG} of neighbors of i.

The sequence {d;}icve of G is called a degree sequence of G. There is
a multitude of equivalent conditions for determining when a given sequence
of integers is a degree sequence. Havel [11] in 1955 and Hakimi [9] in 1962
independently obtained recursive conditions for a sequence to be a degree
sequence of a graph if and only if the subsequence with its largest element
deleted is also a sequence of a graph. In 1973, Wang and Kleitman [19]
proved the necessary and sufficient conditions for arbitrary deleting. There
are seven criteria for a sequence to be a degree sequence of a graph, which are
proposed by Ryser [17] in 1957, Berge [1] in 1973, Fulkerson, Hoffman, and
McAndrew [6] in 1965, Bollobas [2] in 1978, Griinbaum [7] in 1969, Héssel-
barth [10] in 1984, and Erdds and Gallai [5] in 1960. And in 1991, Sierksma

and Hoogerveen [18] proved that the above seven criteria are equivalent.



Let m; be the average 2-degree of the vertex ¢ € VG, defined as follows.
1
m; :d— Z dj.
' jieEG
And the sequence {m;};cv¢ of G is called a average 2-degree sequence of

G. We shall give a survey of average 2-degree sequence of a graph.

Let G be a simple graph. The adjacency matrix of GG is the 0-1 matrix
A indexed by VG such that A, = 1 if and only if 2y € EG. The degree
matrix of G is the diagonal matrix D indexed by VG such that D,, is the
degree d, of x € VG. The average 2-degree sequence appears often in the
study of maximum eigenvalue ¢;(G) of the Laplacian matrix L = D — A
associated with G, where D is the degree matrix and A is the adjacency

matrix of G. The following results are about the upper bounds of ¢;(G):
1. In 1998, Merris gave the following bound [15] :

< , .
6L(G) < max {d; +m;}.

2. Also in 1998, Li and Zhang gave the following bound [14]:

di(d; +m;) + d;(d; +my)
d; + d; '

(1 (G) < max

jEEG
3. In 2001, Li and Pan gave the following bound [13]:

((G) < max { 2d,(d; + mi)} .

4. In 2004, Das gave the following bound [4]:

ijEEG

(1(G) < max { 5



5. Also in 2004, Zhang gave the following bounds [21]:

()

ijEEG

(@) < max {di + M} :

1eVG

6L(G) < Jnax {\/di(di +my;) +d;(d; + mj)} .

As everyone knows, a graph G is k-regular if d; = k for all vertices
1 € VG. If m; = k for all vertices i € VG, G is called pseudo k-regular in
[20]. For convenience, we rearrange the vertices of G by 1,2,---  n such that
my > mg > -+ > my,. Let a;(G) be the maximum eigenvalue of adjacency

matrix A associated with GG, and we have following.

Let B = D7'AD, where D is the degree matrix and A is the adjacency
matrix of G. Then B is a nonnegative irreducible n x n matrix. By Perron-
Frobenius Theorem in [16], we have a;(G) < m; with equality if and only if

G is a pseudo k-regular graph.
In 2011, Chen, Pan and Zhang [3] proved the following.

Theorem 1.1. Let a := max{d;/d; | 1 <i,j <n}. Then

0(G) < ma — a + +/(ma + a)? + 4a(m; — mo)
1(G) <
2

with equality if and only if G is a pseudo k-regular graph.



And in 2014, Huang and Weng [12] proved the following.

Theorem 1.2. For any b > max{d;/d; | ij € EG} and 1 <[ <n,

my — b+ \/(mz +0)2 +4b >0 (my — )
2

a1 (G) <
with equality if and only if G is a pseudo k-regular graph.

This thesis studies degree sequence together with average 2-degree se-
quence of a graph. Thus we define the sequence {(d;, m;) };cv¢ of pairs as a

degree pairs.

(23) (2,3)

(7,3)

Figure 1.2: Two graphs with the same sequence of degree pairs (d;, m;).



This thesis is organized as follows. In Chapter 2, we introduce some
basic results about degree pairs. In Chapter 3, we prove that if G is pseudo
k-regular then £ € N, and give a family of pseudo k-regular graphs 7j.
Furthermore, we prove that T} is the only pseudo k-regular tree for each k.
We also consider the case when the maximum degree of G is k? — k, and
give some basic results. In the end, we give more results of pseudo 3-regular
graphs. And characterize all the pseudo 3-regular graph within ten vertices

but not regular.



Chapter 2

Degree pairs

Let G be a simple graph with vertex set VG = {1,2,...,n}, edge set EG,
and sequence {(d;,m;)}icve degree pairs. The following lemma provides a

feasible condition of degree pairs.

Lemma 2.1.

ieVG ieVG

Proof.

> dimi= Y d =SS JZEEG _Z S di= > d

ieVG 1€EVE 1EVGijeEG 1€EVGE

[]

We give a sequence A = {(1,3),(1,3),(2,3),(3,2),(3,2)}, and a sequence
B ={(1,4),(3,2),(3,3),(3,3),(4,2)}. Observe that sequence A matches the
condition in Lemma 2.1, and is a sequence of degree pairs of the graph as
shown in Figure 2.1. But sequence B does not match the condition in Lemma

2.1, so its not a sequence of degree pairs of any graph.



Figure 2.1: A graph with the given sequence A.

Here is another feasible condition for degree pairs.
Lemma 2.2. There are even number of odd values d;m; among i € VG.

Proof. Since ).y, d; is even, there are even number of odd d;, and so does

2 o — 2 ;
d;. Hence ), o dim; =) ..y d; is even. O

Corollary 2.3.

mez de

ieva ieVa
with equality iof and only of m; = d; = k for all 1.

Proof.

(- d) (> m) = (D dm)* = () d3)?

VG ieva ievVa ieva
and equality if and only if m; = cd; for all i € VG, where ¢ = 1 by the

Lemma 2.1. This is also equivalent to that all neighbors of a vertex of

minimum degree k also have degree k. O]

Degree sequence gives hints of graph properties. For example, the well-
known fact |EG| = % Y icve di expresseds the number of edges of a graph as

a sum its degree sequence.

The sequence of degree pairs give more hints of graph structure. In gen-
eral, d;m; > |G1(i)| + |G2(i)|, and there are at least (d;m; — n)/2 triangles

based on the vertex i.



Proposition 2.4. If max;cyg dym; > n then the graph has girth at most 4.

Proof. 1f the graph has girth at least 5 then
n—1=|VG|—12>|Gi(i) + G2(i)| = dym,.

for any i € VG. ]

Figure 2.2: A graph has girth at most 4.

In Figure 2.2, we observe that max;cyg dim; =8 > 6 = |V (G|

The distance d(z,y) between two vertices x and y of a graph is the min-
imum length of the paths connecting them. Let G? be the square of G,
denote the graph with VG? = VG and EG* = {zy | d(x,y) < 2}. The inde-
pendence number of G is «(G) = max{|S| | S C VG, S is the independent
set of G}.

Proposition 2.5.

a(G?) > Z L

ieva 1+ dim;

where a(G?) is the independence number of the square of G.

Proof. 1f a vertex is picked equally in random then the probability of a vertex
i appears before those vertices in G (1)NGo(7) is (1+|G;(i)|+]G2(7)|) . Hence
the expected size of a set consisting of these i is Y,y (1+|Gi(i)|+]Ga(4)]) 7,

which is at least > O

1
1€VE 1+d;m; °



The following lemma will be used later.

Lemma 2.6. d; < m;(m; — 1) + 1 for any j with ji € EG and d; < m,.
Moreover the above equality holds if and only if d; = m; and all neighbors of

J excluding © have degree 1.

Proof. Pick j such that ji € EG and d; < m,. Then dym; > d; + (d; — 1) - 1.
Hence



Chapter 3

Pseudo k-regular graphs

We now turn to the study of pseudo k-regular graphs, i.e. m; = k for all

1. We try to give some theories for pseudo k-regular graphs.

From the definition of pseudo k-regular graphs, £ € Q, but indeed we

have the following.

Proposition 3.1. If G is pseudo k-reqular then k € N.

Proof. Let A be the adjacency matrix of ¢, and note that
(dy,da, ... dy)A =k(dy,ds, ..., dy).

Being a zero of the characteristic polynomial of A, k is an algebraic integer.

Since k is also a positive rational number, k is indeed a positive integer. [

Obviously, any k-regular graph is a pseudo k-regular graph. However, a
pseudo k-regular graph may not be a regular graph. An interesting problem
is to characterize all the non-regular pseudo k-regular graphs. There are
some examples in [12] of pseudo k-regular graphs that are not regular in the

following Example 3.2.

10



Example 3.2. The graphs in Figure 3.1, 3.2, and 3.3 are pseudo k-regular

but not regular.

Figure 3.1: A graph with m; = 2.

Figure 3.2: A graph with m; = 3.

Figure 3.3: A graph with m; = 4.

It is natural to ask when a pseudo k-regular graph attains the maximum

number of edges when the order n of a graph is given.

11



Theorem 3.3. A pseudo k-reqular graph has at most nk/2 edges, and the

maximum is obtained if and only if the graph is reqular.

Proof. From

2K|EG| =Y dim; = d?> () d;)*/n=4EG]/n,
ieVGE ieVG nage

we have |FG| < nk/2 and equality is obtained if and only if d; is a constant.

]

We shall study the connected pseudo k-regular graphs of order n which
attain the minimum number of edges, i.e. pseudo k-regular trees. We also
want to study connected pseudo k-regular graphs of order n with maximal

degree among such graphs.

Definition 3.4. Let T}, be the tree of order k* — k? + k + 1 whose root has

degree k? — k + 1 and each neighbor of the root has & — 1 children as leafs.

Figure 3.4: The tree T5.

Figure 3.5: The tree T3.

12



Note that T} is exactly the complete graph K,. For each k£ > 2, T}, exists

and provides an example for a non-regular pseudo k-regular graph.

Let A(G) = max{d; | i € VG} be the maximal degree of G. We have the

following result.

Theorem 3.5. Let G be a connected graph with m; < k for all i € VG and
some k € N. Then A(G) < k* — k + 1. Moreover the following (i)-(ii) are

equivalent.
(i) AG)=k*—k+1.
(i) G is the tree Ty.

Proof. Choose i such that d; = A(G). Then by Proposition 2.6, A(G) =
di < mi(m; —1)+1 = k* — k + 1 for any j with ji € EG and d; < m,.
Moreover A(G) = k* — k+1if and only if d; = m; =m; =k and d, = 1 for

all neighbors z # i of j. Hence (i) and (ii) are equivalent. O

We have seen that the degree of a neighbor of maximum degree vertex is

k in Ty. We are interested in what other vertices have this property.

Lemma 3.6. Let G be a pseudo k-regular graph. Then the following (i)-(ii)
hold.

(i) If z is a vertex of degree 1 then k is the degree of the neighbor of z.

(ii) If ij is an edge with 2 < d; < k then 2 < d; < k* — 3k + 4, with the

second equality if and only if all neighbors of j except i have degree 2.

13



Proof. (i) is clear. To prove (ii), note that d; # 1, otherwise d; = k, a

contradiction. Indeed d, # 1 for any neighbors z of j. Hence
Hence
di <dj(k—2)+2<k>—3k+4.

]

Corollary 3.7. Let G be a pseudo k-reqular graph of order n with a vertex
of degree d; > k* — 3k + 5. Then

(i) Any neighbor j of i has degree d; = k;
(ii) The order of G is at least f(k) := [(5k* — 31k* + 94k* — 140k + 100)/k?] .

Proof. (i) From Lemma 3.6 (i) d; # 1, and from Lemma 3.6 (ii) d; > k. This
is true for all neighbors j of ¢. Hence d; = k.
(ii) From Lemma 2.1 3>, o d2 = > e dwMa,
E+dkr+ Y =kdi+Kdi+ Y kdy.
we{i}UG1(4) wg{i}UG1(3)
Hence

BU - TR 42267 =35k 425 < Y dy(k—dy)
wg{i}UG1 (1)

(S)Q(n— 1— (k* =3k +5)).

IA

14



Note that for k=3, k* —3k +5=>5 and f(3) = 11.

Now we try to characterize the pseudo k-regular graphs. It is easily seen
that a graph is pseudo k-regular if and only if each component of it is pseudo
k-regular. Hence we just focus on the characterization of connected pseudo

k-regular graphs.

The first two cases of pseudo k-regular graphs are easy to settle.
Lemma 3.8. If G is connected pseudo 1-reqular then G is Ks. O
Lemma 3.9. If G is connected pseudo 2-reqular then G is a cycle or Ts.

Proof. Note that A(G) = 2 or 3, and the first implies that G is a cycle and

the latter implies that G = T5. O

Pseudo k-regular graphs is also called harmonic graphs [8], and finite
harmonic tree are already given. But for the complete of this thesis we

reprove the Theorem as follow.

Theorem 3.10. /8, Theorem 2.1] If G is a pseudo k-regular tree, then G =
T

Proof. By Lemma 3.8 and Lemma 3.9, the assumption holds for each £ < 2.
Let G = (VG, EG) be a pseudo k-regular tree with k > 3. Pick any v € VG
with d, > 2 as a root. Since a star is not pseudo k-regular, there exists a
leaf  with parent y # v, such that all children of y are leaves. Then y has
degree k£ by Lemma 3.6 and has £ — 1 children as leaves. Hence the degree
of root d, = km, — (k — 1) = k? — k + 1. This concludes that G = T}, by
Definition 3.4. N

15



We shall study pseudo k-regular graph with the second largest degree
k? — k.

Definition 3.11. Let U, be the tree of order k> — k? + 1 whose root has

degree k* — k and each neighbor of the root has k — 1 children as leafs.

Figure 3.6: The graph Us with type A vertices.

We shall select some vertices from a graph and call them type A vertices.
In general a type A vertex has degree 1 and its unique neighbor j has d; = k
and m; = (k* —t)/k, where t is the number of type A neighbors of j (in Uy,
t=1).

Let My be the graph obtained from Uy by identifying (k? — k) /2 pairs of
type A vertices into (k% — k)/2 vertices. Then M, gives a pseudo k-regular

graphs with maximum degree k? — k for each k > 3.

Figure 3.7: The graph Ms;.

16



Proposition 3.12. If G is a pseudo k-regular graph with a vertex x of degree
k* — k, then the subgraph induced on {x} U Gy(z) U Gy(z) is Uy, with possibly
even number of vertices in type A being identified in pairs. Moreover a type

A wvertex not been identified with another one has degree 2 in G.

Proof. Let y be a neighbor of z. Then y has degree d,, = k by Corollary 3.7(i),
and has a neighbor z # x of degree d, > 2 by Theorem 3.5. Hence k* =
dymy > d, +d, + (dy —2) > (k* — k) + 2+ (k — 2) = k*. This implies that
d. = 2 and the remaining vertices w ¢ {z, z} of y have degree d,, = 1. Note
that z,w have distance two to x. As one neighbor of z has degree k, the
other neighbor of z also has degree k. Hence the vertex z might adjacent to

some neighbor of = or to some vertex of degree k and at distance 3 to z. [

Let & be a family of graphs constructed as the following. Firstly pick a
bipartite (k — 1)-regular graph of order 2(2k — 1) with bipartition X UY’,
where | X| = |Y| = 2k — 1. Then add a new vertex connecting to all vertices
of X. One can check that graphs in & are pseudo k-regular of order 4k — 1

with maximum degree 2k — 1.

X, 2%k-—1

1
<> Y, 2%-1

Figure 3.8: The graphs in &.

(k — 1)-regular



By a switching on GG, we mean a process to obtain a new graph G’ by
removing two edges xy and wv such that d, = d,, and d, = d, and adding
two new edges xv and yu to form a new graph, where zv and yu are not

edges in G. In this case G and G’ are called switching equivalent.

Figure 3.9: Switching.

Figure 3.10: The graph F5 € &;.

Every graph in &3 is switching equivalent to Ej3.

From Corollary 3.7 (ii), we know a pseudo 3-regular graph with maximum
degree at least 5 has at least f(3) = 11 vertices. All the graphs in & are

extremal for this property.

Let Fj be a family of graphs constructed as the following. Firstly pick

any (k—2)-regular graph H of order (2k—1)(k—1), not necessary connected.

18



Secondly add (2k — 1)(k — 1) new vertices of degree 1 by connecting them
to vertices of H one by one. Finally partition the vertex set of H into k — 1
blocks of equal size 2k—1 and connect all vertices in a block to a new vertex to
make it degree 2k — 1. One can check that graphs in F are pseudo k-regular

with maximum degree 2k — 1.

T

n

Figure 3.11: The graphs in F3.

N\

RERENE

Figure 3.12: The graph F3 € F3.

Every graph in Fj3 is switching equivalent to F3.

Now we restrict our attention to pseudo 3-regular graph G.

19



Note that the maximum degree 3 < A(G) < k* — k+ 1 = 7 and the case
A(G) = 7 is solved by Theorem 3.5 and Theorem 3.10.

The local structure of a maximum degree A(G) = 6 is obtained in Propo-

sition 3.12 for k = 3.
The following lemma is immediate from Corollary 3.7.

Lemma 3.13. Let G be a pseudo 3-reqular graph with a vertex i of degree
d; = 5. Then all neighbors j of © have degree d; = 3, and the neighbors of j

have degree sequence (5,2,2) or (5,3,1). ]

Proposition 3.14. If G is a pseudo 3-regular graph with a vertezx i of degree
5, then the subgraph induced on G1(i) is union of disjoint edges or isolated
vertices, and each endpoint of an edge is adjacent to a vertexr of degree 1
in Ga(i) and each isolated vertex is adjacent to two vertices in Gy(i) with

degrees (3,1) or (2,2). O

Figure 3.13: Graphs with A(G) = 5.

Now we study the local structure of a vertex of degree 4 in a pseudo

k-regular graph.

20



Lemma 3.15. Let G be a pseudo 3-regular graph. Then the neighbor degree

sequence of a vertex of degree 4 is (3,3,3,3), (4,3,3,2), or (4,4,2,2).

Proof. Let (a,b,c,d) be a degree sequence of the neighbors of a vertex i of
degree d; = 4, where a > b > ¢ > d. Note that a < 4 otherwise d; = 3 by
Corollary 3.7 (i). Then a+b+c+d = d;-3 = 12. By checking all possible such
sequences (a,b, c,d), we find these are as listed in the lemma or (4,4, 3,1),

which is impossible since the neighbor of a leaf must have degree 3. O]

Proposition 3.16. If G is a pseudo 3-reqular graph with a vertex i of degree 4
and the neighbor degree sequence of i is (3,3,3,3), then the subgraph induced
on G1(i) is union of disjoint edges or isolated vertices, and each endpoint
of an edge is adjacent to a vertex of degree 2 in Gy(i) (possibly identified
in pairs) and each isolated vertex is adjacent to two vertices in Ga(i) with

degrees 2,3 or degrees 1,4. [

Figure 3.14: Graphs with A(G) = 4 and the neighbor degree sequence of

a vertex of degree 4 is (3, 3,3, 3).

In Figure 3.14 we have 1 + |G1(i)| + |G2(2)| > 7.

21



Figure 3.15: The graph has A(G) = 4 with degree sequence (3,3, 3, 3).

Proposition 3.17. If G is a pseudo 3-reqular graph with a vertex i of degree
4 and the neighbor degree sequence of i is (4,3,3,2), then the neighbor of i
with degree 2 in G is isolated in G1(i), and the neighbor of i with degree 3 in

G has at most one neighbor in G(3). O

Figure 3.16: Graphs with A(G) = 4 and the neighbor degree sequence of

a vertex of degree 4 is (4, 3, 3, 2).

In Figure 3.16 we have 1 + |G1(2)| + |G2(7)] > 8.

Figure 3.17: The graph has A(G) = 4 with degree sequence (4, 3,3, 2).

22



Proposition 3.18. If G is a pseudo 3-reqular graph with a vertezx i of degree
4 and the neighbor degree sequence of i is (4,4,2,2), then the neighbor of i

with degree 2 in G is not connected to a neighbor of i with degree 4 in G. [

Figure 3.18: Graphs with A(G) = 4 and the neighbor degree sequence of

a vertex of degree 4 is (4,4,2,2).

In Figure 3.18 we have 1 + |G1(7)| + |G2(7)] > 9.

Figure 3.19: The graph has A(G) = 4 with degree sequence (4,4, 2,2).

We will list all pseudo 3-regular graphs which are not regular of order

within 10. From Corollary 3.7(ii), such graphs have maximum degree 4.

23



Lemma 3.19. Let G be a connected pseudo 3-regular graph with A(G) = 4
and a; == |{i | d; = j}| for j =1,2,3,4. Then

(i) a1 + az = 2ay,
(i) |VG| = as + 3ay,
(111) a1 < ag,
(iv) ay,as,as have same parity.

Proof. (i) and (ii) follow from solving

ieva ieva
(iii) follows since there exists an injection from the set of degree one vertices

into set of degree 3 vertices. Since there are even number of vertices of odd

degrees, a; + as is even. The remaining follows from (i) and (ii). This proves

(iv). O

From the above lemma, the following is the possible sequence of (n, ay, as, as, a;)
for a connected pseudo 3-regular graph of order n with A(G) = 4 and

7<n <10.

(n,ay,as, az, ay)
=(10,3,1,5,1),(10,2,4,4,0),(10,2,4,2,2),(10,2,4,0,4), (10,1,7,1,1)
=(9,3,0,6,0),(9,2,3,3,1),(9,2,3,1,3),(9,1,6,2,0),(9,1,6,0, 2)
=(8,2,2,4,0),(8,2,2,2,2),(8,1,5,1,1)
(

=(7,2,1,3,1),(7,1,4,2,0),(7,1,4,0,2).

24



One can check directly that there is no graph whose corresponding se-
quence (n, ayq, as, az,aq)is (10,3, 1,5, 1), (10,2, 4,2,2), (10,1,7,1,1), (9,2, 3,1, 3),
(9,1,6,0,2), (8,2,2,4,0), (8,1,5,1,1), (7,2,1,3,1), or (7,1,4,0,2).

Small pseudo 3-regular but not 3-regular graphs are listed as follows.

VG| =T:

(Switching equivalent)

Figure 3.20: Graphs with sequence (n, ay, as, as, a1) = (7,1,4,2,0).

VG| =8:

Figure 3.21: The graph with sequence (n, a4, as, as,a1) = (8,2,2,2,2).
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VG| =9:

(Switching equivalent)

Figure 3.22: Graphs with sequence (n, ay, as, as,a1) = (9,3,0,6,0).

Figure 3.23: The graph with sequence (n, a4, as, as,a1) = (9,2,3,3,1).

(Switching equivalent)

Figure 3.24: Graphs with sequence (n, a4, as,as,a1) = (9,1,6,2,0).
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VG| = 10:

b

(Switching equivalent)

N

Figure 3.25: Graphs with sequence (n, a4, as, as, a;) = (10,2,4,4,0).

Figure 3.26: The graph with sequence (n, a4, as, as, a;) = (10,2,4,0,4).

Under what kind of partial information of the pairs (d;, m;), one can

conclude the diameter of G is at most 6.

In our study of pseudo k-regular graph with a vertex of the maximum

degree k* — k + 1, the obtained graph T} has diameter 4.

The vertices with large degrees should also play an important role in other

graphs.
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