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Chapter 1

Introduction

Let G = (V, E) be a simple connected graph with vertex set V' = {vy,vq, -+ ,v,}
and edge set E. LettA(G) be-the-adjacency matrix of Gy i.e. the ij-entry of the
matrix is 1 or 0 according to whether v; and wv; is adjacent or not. Denote by d; =
|G1(v;)| the degreeof vertex v; € V(G), where G (v;) is the set of neighbors of v;,
and let D(G)=diag(d;,ds, - - ¢, dy) be'the diagonal matrix with entries dy,ds, - - - , d,.

Then the matrix

is called the Laplacian matrix of a graph G. The Laplacian spectrum of G is
S(G) = (gl(G>7€2(G)’ T 7€n(G))>

where ¢1(G) > ly(G) > -+ - > £,,(G) are eigenvalues of L(G) arranged in nonincreas-

ing order. Especially, ¢;(G) is called Laplacian spectral radius of G. Now we

list some known upper bounds of Laplacian spectral radius, as follows.



In 1985[1], Anderson and Morley showed the following bound

(1(G) < max{d; +d;}, (1.1)

ViU

where v; ~ v; means that v; and v; are adjacent. We call m; = 7 zviwi d; average
o

2-degree of vertex v;. For all v; € V(G), we have d; +m; = d; + 7 Zvjwi d; <

d; + max{d;} < max{d; +d;}. In 1998[7], Merris improved the bound (1.1), as

follows

< ; .. .
6L(G) < vigl\?(}é) {d; +m;} (1.2)

In 2000[9], Rojo et al. showed the following upper bound

fl(G) S max {dz -+ d]‘ — ’Gl(vz) A Gl(’l)j)|} . (13)

ViU

In 2001[5], Li and Pan gave a-bound, as follows

L) < max {V2a(@ )} (1.4)

In 2004[11], Zhang showed  the following result, -which /s always better than the

bound (1.4).

0.(C)max {d#@}. (1.5)

UiEV(G)

In this paper, we obtain a new sharp upper bound of Laplacian spectral radius
(1(@), and provide some graphs that satisfy the sharp upper bound. In particular, if
G is a strongly regular graph with parameters (n, k, \, i), then the graph satisfies
the sharp upper bound, where strongly regular graph G with parameters (n, k, A, p1)
means that G is a k-regular graph with n vertices and common neighbours of two
adjacent(nonadjcent) vertices is a fixed number A(p), respectively, and G is denoted

by srg(n, k, A, ). See Theorem 3.5 and Corollary 3.13 for those results.



Chapter 2

Preliminaries

Let G = (V, E) be a simple connected graph with vertex set V' = {vy,vq, -+ ,v,}
and edge set £. Weidefine G“to-be the complement of G, i.e. G° has the same
vertex set of G and two distinct vertices of G are adjacent if and only if they are
not adjacent in G.* Let an orientation ¢ of a graph G be an assignment of each
edge of GG a direction to form a digraph G?. Let N denote the directed incidence
matrix of G7, i.e. N has rows indexed by the vertices and columns by edges, where
the ze-entry of N is —1,1; or Owwhen x is the'head of e, the tail of e, or not on
e, respectively. Hence we have L(G)'='NNT which implies that L(G) is positive

semi-definite. Then we have the following facts|3].
1. £,(G) = 0 is an eigenvalue of L(G) corresponding to the eigenvector 1,,, where
1,, is the all-ones vector.
2. If X = (x1,29,,m,)" is an eigenvector of L(G) corresponding to ¢;(G)

(1<i<n-—1),then ) ! z;=0.

3. L(G)+ L(G®) = nl—J, where I and J are identity matrix and all-ones matrix,

3



respectively.

4. If X is the eigenvector of L(G) corresponding to 4;(G) (1 < i < n — 1), then

X is also an eigenvector of L(G*) corresponding to n — 4;(G).

5. 4;(G) <n,for 1 <i<n.

Now, we give more definitions.

Definition 2.1. Let G = (V, E) be a simple connected graph with vertex set V =

{v1,v9,++ ,v,} and edge set E. The following notations are adopted.

1. )\(G) = min|G1(vZ~) R Gl(Uj)|.

Vi~V

2. [L(G) = min|G1(Ui) N Gl('Uj)l-

Vv

3. We call G a triangulation, if A\(G) > 0:

4. A planar graph is called a maximal planar graph if every pair of nonadjacent

vertices u and v of GG, the graph G +wwv is nonplanar:.

Remark 2.2. Let G = (V; E) bewa simple connected graph. Then we have u(G) =

AG).

Theorem 2.3. [4] If G is a mazimal planar graph and |V (G)| > 4, then G is a

triangulation. Moreover, \(G) > 2.

Proof. Because G is a maximal planar graph, every region in G is triangle. When
\V(G)| > 4, we know that every edge in a maximal planar graph belongs to two
distinct regions. Therefore, it implies that any two adjacent vertices in GG have at
least two common neighbors. On the other hand, A\(G) > 2. O

4



In 2013, Guo et al. improved the bound (1.5) and showed the following result.

Theorem 2.4. [4, Theorem 3.1] Let G = (V, E) be a simple connected graph with

vertex set V.= {vy,v9, -+ ,v,} and edge set E. We define

M(G) = max
Uz'GV(G)

where A\ = \(G). Then

0(G) < M(@), (2.1)

O

In 2013, Guo et al. sho CO [ aximal planar graph, as follows.

Corollary 2.5. [4, Theore L M anar graph and |V (G)| > 4,

then



Chapter 3

Main Results

3.1 Some Corollary about Theorem 2.4

We will show two easy corollaries of Theorem 2.4.

Corollary 3.1. If G is a k-reqular graph, then
where A = \(G).

Proof. Because G is a k-regular graph, we have d; = m; = k, for all v;. Therefore,

2d; — A 4d;m; — 4ANd; + N2
4 (G) < max { + Vidim i }
v €V(G) 2
_2!{:—/\+\/4k-k—4/\k+)\2
n 2
=2k — \.

Because ¢1(G) < n, we get the following corollary.

6



Corollary 3.2. If G is a simple connected graph with n vertices, then ¢,(G) <

min {M(G),n}.

3.2 Main Results

Now we will show our main result. First, we give a proposition, as follows.

Proposition 3.3. [§] Let G = (V, E) be a simple connected graph with vertex set

V ={vy,v9,- - ,v,} and edge set E.

1 IfT = AG)? and T = (t;;), we have t;; =|G(v;) N G1(v;)] and Y t;; =
j=1

j~i

2. If X = (z1, %3, 1+ ,2,) " is a vector, X T L(G)X = > (&, — z1)2
<k
'UjN’l)k

Now, we prove the main.theorem, which improves Theorem 2.4.

Theorem 3.4. Let G = (V, E)/be a simple connected graph with vertex set V =
{v1,v9, -+ ,v,} and edge set E. Let S(G) = ((1(G),l2(G),- -+ ,£,(Q)) be the Lapla-

cian spectrum of G. We define

2d; — VB
M'(G) = max { i At pt :Biz()}
v EV(Q) 2
and
2d; — A —VB;
N'(G) = min { . T u :BZ-ZO},
v; €V (G) 2



where B; = 4dym; — 4\ — p)d; + (A — p)? — 4pn, A = MG), and p = p(G). Then
N'(G) <{(G) < M'(G), (3.1)
where ((G) € {(1(G), la(G), -+ ,€n_1(G)}.

Proof. Let X = (x1,22,-++ ,7,)" be the eigenvector of L(G) corresponding to £(G).

We have

n

> ldi — UG)Pa} =[(D(G) - L(G) DX

=1

=[l(D(G) - L(G))X|*

=[|A(G)Xf°
=XNTX
= Z t“:c + 2 Z Lk jL o
i<k

_thzx +Zt]k 37 +xk j_xk:>2)

]<k
:Z((tz’i -+ th‘j)ﬁ) — >l 2 a)® = D ti(w —w)’

i=1 )= I<k <k
j;éi Vj U VUL

gidimix —)\Z - —uz —SCk
i=1

i<k i<k
VUL Vj Uk

= dimx} = AXL(G)X — uX"L(G)X
=Y dimaa} = M(G)|[X|]* = p(n — ¢(G))[|1X|I?

= i dimz? — M(G) ix? — p(n —4(Q)) i T3
i=1 i=1 i=1

Thus, we have

> [(di = U(G))* = dimi + M(G) + p(n — €(G))]a} < 0. (3.2)



Then there must exist a vertex v; such that

(d — 6(G))? = dymi + M(G) + p(n — £(G))

=U(G)* = (2d; = A+ p)U(G) + (d — dim; + pn) <0,

which implies that

2di—/\+u—\/E<g <2di—/\+,u+\/E

2 (G) < 2
Therefore,
N'(G) <U(G) < M'(G).
O
According to T +).and have the following
theorem.
Theorem 3.5.
(3.3)
and
l,1(G) > N'(G) (3.4)
O

We have similar corollary as Corollary 3.1 about ¢;(G) and ¢,,_;(G) on a regular

graph.

Corollary 3.6. If G is k-reqular graph, then

< 2k — A+ p+ 4k — 4\ — p)k + (A — p)? — 4pn

4(6) :




and

- 2k — A+ pp— J4k2 — 4\ — p)k + (A — )2 — dpn

l—1(G) 5

It is similar to Corollary 3.2, and we have the following corollary.

Corollary 3.7. If G is a simple connected graph with n vertices, then (1(G) <

min {M'(G),n} .

O

We give an example and pare results of Theorem 2.4 and 3.5
Example 3.8. In thi§ ex: i 3\ ) ich is srg(10, 3,0, 1), as
follows. Hence, we:ha ), 1 ad a . rertex v;, and we compute

Figure 3.1: Petersen graph

10



According to Theorem 2.4

2x3-0+v4x32-0+0
B 2
=0.

According to Theorem 3.5

M'(G) = max
v; €V (G)

2 * Z_

2x3—041+4/4x32-40-1)34+(0—-1)2—4x1x10
B 2
=5.

Therefore, we have ¢(G) = b =M'(G) <"M(G) = 6. According to this example,

we will prove twosthings, as follows
1. M'(G) < M(G), if we econsider the condition ¢,(G) <n.
2. If G is a strongly regular‘graph, then /,(G) = M'(G):

In Theorem 3.9 and Corollary/3.13, we will prove two results about those observa-

tions.

In Theorem 3.9, we will show that our result of Corollary 3.7 is better than

Corollary 3.2.

Theorem 3.9. Let G = (V, E) be a simple connected graph with vertex set V =

{v1,v9, -+ ,v,} and edge set E. Then

min {M'(G),n} < min {M(G),n}.

11



Proof. We have two cases in this proof.
Case 1: When M(G) > n, we have min {M(G),n} = n > min {M'(G),n}
Case 2: When M (G) < n. Let ¢; be the largest root of fi(x) = (d;—x)*—d;m;+Ax = 0

and & be the largest root of g;(z) = (d; — x)? — dym; + Az + pu(n — x) = 0, for

1 <i<mn,as B; >0, where A = A\(G) and u = u(G). Then we have

B 2

Gi

and

Hence, we can remark that M(G) = max{{;} and M'(G) = max{{}. Let

v; € V(G).. If.B; 2 0, then-we have

o« 9i(G) =A(d; — G)* — dimi + AG (= G) = 0 4 p(n — ¢;) > 0, because
M(G) <n'implies ¢; < n.
20y — e\

o Gi(G) = 2(G—di) A —p > 2( =d;)+N=u =d; —p >0, because

p= p(G) ="min|Gy(v;) N G1(v;)] < rr%/i?G)|G1(vi)] <d;, for 1 <i<n.
’Uio-’il)j ’Uie

Therefore, & < (;, for 1 <1 <n,as B; > 0.

Finally, we get M'(G) = max{{;} < M(G) = max{(} < n.

According to those cases, we complete the proof. O

3.3 Applications of Theorem 3.5

In the section, let A = A\(G) and p = u(G). First, we give a trivial example on
n = 5 such that the equality in (3.3) holds.

12



y = gi(z)

(Cz', gi(Ci))

Figure 3.2: compare (; and &;

Example 3.10.

v;, and we calculate the ¢1(G) = 5. Then, according to Theorem 3.5, we get

C2x4-3+40+/4x42-4(3-0)4+(3-02—-4x0x5
— : —

M'(G) 5=0,(G).
Therefore, K3 is a graph which satisfies the the equality in (3.3) .

We have the following definition about two graphs.

Definition 3.11. [6] Let G; = (V4, 1) and Gy = (Va, Ey) be two graphs with

13



disjoint vertex sets. Then we define the join of two graphs G; and G5 is Gy V Gy =

(V,E), where V=V, UV, and E = Ey U E; U {ay|x € V} and y € V5}.

Theorem 3.12 is a useful tool to compute ¢;(G) and eigenvector corresponding

to the join of two graphs.

Theorem 3.12. [6] Let G = (V1, Ey) and Gy = (Va, E3) be two graphs with disjoint
vertex sets and (|Vi|,|Vz|) = (n,m). Let \; and v; be eigenvalues of L(G1) and
L(Gs) corresponding to the eigenvector v; and wj, respectively, where < \; > and
< vj > both are nonincreasing sequences, for all1 <i <n and 1 < j <m. Then,
0,\i + m,v; +n, and n +<m are-eigenvalues.of L(G1 V G3) corresponding to the
eigenvector 1ppm, (01500, (0], w )T Land (ml,) —ul)", respectively, for all

2<i1<nand?2 <gp<m. ]

Now, we find some graphs such that the equality in (3.3) holds. First, the equality
in (3.2) hold if and-only if

Z b (2; — 2)2 = X Z (af £ 3p)

i<k i<k
v~V VeIV

and

S tplay —an)® =p > (x5 — ap)’

j<k j<k

VXU Vj*UE
It is not easy to find a sufficient and necessary condition which satisfied the above
two equations, because we must understand more about the eigenvector. We have
an obvious condition to satisfy above two equations, if |G;(v;) N Gy (v;)| = A(G) for

any edge v;v; of G and |G1(v;) N G1(vj)| = u(G) for any edge v;v; of G°, then the

equality in (3.2) holds. Therefore, when G is a strongly regular graph with some

14



parameter (n, k, A, 1), G make the equality in (3.2) holds, because A or p is a fixed
number of common neighbours of two adjacent or nonadjcent vertices, respectively.
We will show that it is not a coincidence that the Petersen graph of Example 3.8
satisfies the equality in (3.3). In Corollary 3.13, we will prove all strongly regular

graphs satisfy the equality in (3.3).
Corollary 3.13. If G is a strongly regular graph with parameters (n,k, \, 1), then

0(G) = M'(G) and ly_1(G) = N'(G).

k(k—1—)\)

Proof. Because n =1+ k + ,. we have
1
2k — A+ p £ AR = A=)k + (X —p)2 =4dun
2
2k—/\+ui\/4k:2—4(/\—,u)k;+(>\—u)2—4u(1+k+M)
]
B 2
2k — A+ ek /(M= )2 + 4(k — p)
= 5 :
Here
28 =X+ p+ (A=) + 4k =
Ao z \/(2 )2 +Aks 1)
and
2k = X+ p—/ (N —pn)* 4+ 4(k —
(o) = PN = p)? + 4k — p)

2

are a known result about the graph srg(n,k, A, u). Therefore, we complete the

proof. ]

It is difficult to find a graph, which satisfies the equality in (3.3), though some
graphs satisfy the equality in (3.2). The following are some examples, which sat-
isfy the equality in (3.2), but the equality in (3.3) uncertainly holds. In Exam-
ple 3.14 and Example 3.15, We will show fan graphs such that the equality in

15



(3.2) holds, but the equality in (3.3) does not hold. After the section, we let

2. — Adm — AN — )d, AT
& = di = A+ p o+ Adim é)\ Wi + (A= 1) ’un,thenweknowM’(G):

m?X{fi}-

Example 3.14. We usually call F, = K; V (K5 a fan graph. When G = F; the

2 4

adjacency matrix A saplacila

and

16



Hence,

11114

A= 1and u = 1. According to Theorem 3.12, weget X = (1 1 1 1 —4) isa

eigenvector corresponding to the eigenvalue ¢;(G) = 5.
We calculate M'(G) and the equalityrin-(3.2) as shown in the following table.

(L(G) =5 < %ﬁ, so«the inequality (3.3) dees notrhold. But the equality in

i | di | my & (d; = 0.(G))? =dim; + ML (G) + p(n — £1(Q))

1~4]2| 3 3 2-52-2-3+1-5¢1-(5-5)=38

5 |4 2 B2 573 4S5 4. 2+1-5 4L (5-5) =2

Table 3.1: calculate M'(G) on Fy

(3.2) holds, because i[(dl — (@) —dim +My(G) + p(n — 6(G))]x? = 0.

Example 3.15. When G = F, = K; V (K, according Theorem 3.12, we have
X = (15,,—20)" is an eigenvector corresponding to the eigenvalue ¢,(G) = 2¢ + 1,
we have following result on Table 3.2. Then we have ¢,(G) =20+ 1 < %.
Therefore, all of F, do not satisfy the equality in (3.3), but the equality in (3.2)

holds.

In Examples 3.16, we will show more graphs with n = 5 such that the equality

n (3.2) holds.

17



2 20+1 20 —1

—_
[\
[

Figure 3.5: F}

120|201 BBEL O —TP2=2(41)+1(20+1)+1-0=402—4(

200+ 1| 20| 2 AL (2020 —1)2~20"2%+ 1(20+1)+1-0=2—2(

Table 3.2: calculate M'(G) on Fy
4 4 4
5 / 55 /\ 3 @3
1 2 1 2 1 2
K4 Ko Ks

Figure 3.6: K14, K3 and Kj

Example 3.16. According to Theorem 3.12, we have all graphs of this example
¢1(G) = 5. In the following table, we list some graphs such that the equality in (3.2)
holds, and we compare M’'(G) and ¢,(G) on Table 3.3.

Therefore, in this example, all complete bipartite graphs, which satisfy the equal-

ity in (3.2), with n = 5 do not satisfy the equality in (3.3).

18



G L(G) M'(G) 06(G)
(4 -1 -1 -1 —1\
-1 1 0 0 0
8+ 16
K4 -1 0 1 0 0 9 =6 o
-1 0 0 1 0
N
|
K2,3 i b
'.
|
-
v
Ks | -1 -1 4 -1 -1 ) 5
-1 -1 -1 4 -1
\—1 -1 -1 -1 4)

Table 3.3: compare K4, K3 and Kj

19



In Examples 3.17, we will show more graphs with n = 6 such that the equality

in (3.2) holds.

Example 3.17. According to Theorem 3.12, all graphs of this example have ¢;(G) =

6. We list the result of the compare of ¢,(G) and M'(G) on Table 3.4. In this

) 4 5 4 ) 4

5 4 5 4 5) 4

6 36 N3 6 3
1 2 1 2 1 2
K3 Ks29 K

0(G)=M'(G) | G(G) = MAG) = ((G) = M'(G)

Table 34: compare (;(G) and M’(G) with n = 6

example, we obtain the following result. If G is a complete k-partite graph, then G

does not satisfy M'(G) = ¢1(G), unless G is a regular graph.

Through Example 3.16 and Example 3.17, we have a corollary about complete

k-partite graph, which, as follow.

Corollary 3.18. Let G be a complete k-partite graph(k > 2). Then, {,(G) = M'(G)

if and only if every part in G has the same number of vertices.

20



Proof. Let G = K, V Kj, V---V K[, where ny < ny < --- < ng is a non-

decreasing sequence. By Theorem 3.12, we can calculate ¢1(G) = n, where n =
Zle n;. Now, we start to compute M'(G). First, for 1 < i < k, we calcu-

late di = n —ng, A = Zf:_fni, o= Zf:_ll ng =mn—ng and dm; = Y, d; =
k k k k T
>ongd; = Y nj(n—n;) =ny n; — > ni. We recall the result of Theorem 3.5
Jj=1 J= Jj=1

J#i %?ﬁi J# J#i
2d; — \ Adym; — 4N — p)d; + (N — p)? — 4
M'(G) = max { et Adim (A= p)di + (A= ) Mn}.Welet
v, EV(Q) 2
2d; — A dd;m; — AN — p)d; + (N —p)? —4
& = tHT \/ m é i + ) Mn. Therefore,
2n — n;) — (—ny_ B B — (2n; — ny_
& = (n = ng) = (= 1)+\/_=n+\/_ (2 — 1),Where
2 2
k k
B =4(n Z nj — Z nJQ) —4(—np_1)(n — Vb (g1 — 4(n — ng)n
=1
RN

k
=4n(n —n;) — 42 n? AN g = Angatiy - mg L — 4n® 4 dn - ny
=1
i
ki
=—4 Z n? — Ang_my iy & An(—npt nr_1 ¥ R
=1
i

In order to calculate &, we.compare v B and (2n; — mr<1), as follows. We calculate

n
B — (Qni — nk,1)2 = —4 Z n? — dng_n; + ni_l + 477,(—711' + Ngp_1 + nk) — (47112 +
j=1

i
k
ni_y — 4nng_1) = —4 37 n5 + 4n(—n; + ng_1 + ng). We have two case to discuss
=1
above formula.
k k
Case 1: Wheni =k, B—(2n; —njp_1)> = —4 Y ni+4n(—np+mp_1+ng) = =4 > n5+
=1 =1
k
An - ng_y > —4ng, Y ng +4n - ng_y = n(n, —ng—1) > 0.
=1

k
Case 2: When 1 <i<k—1, B—(2n;,—nz_1)*> —4> nf +4An(—np_1 +np_1+ng) >
j=1

k
—4dny, Y n; +4n(ng) = 0.

J=1

21



On two case, we have the same conclusion, as follows.

B — (2n; — ng_ 0
1. B— (2n; —nyp_1)? > 0, it implies & = n + VB ( Z 1) > n—|—§ =n.
Therefore, M'(G) > n = (,1(G).
2. The equality holds on two case if and only if ny =ng = -+ = ny.
Hence, we complete the proof. ]

In Example 3.19, we have some graphs, which are not k-partite graph or strongly

regular graph, but satisfy ¢1(G) = M'(G).

Example 3.19. In this example; we give four graphs which satisfy the equality in

(3.3).

22



Therefore, we have some graphs, which satisfy the equality in (3.3), but they are
not k-partite graph or strongly regular graph. Finally in this example, we note that
some graphs, which satisfy the equality in (3.3), but the common neighbors of any

two adjacent or nonadjacent vertices are not a fixed number.
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