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摘 要

令 G = (V,E) 是一個點集 V 和邊集 E 的簡單連通圖。我們有一個新的拉普

拉斯譜半徑的極值上界，而這個上界改進了一些已知的結果。

關鍵詞：圖、拉普拉斯矩陣、拉普拉斯譜半徑。
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The Laplacian Spectral Radius of a Graph

Student: Fan-Hsuan Lin Advisor: Chih-Wen Weng

Department of Applied Mathematics

National Chiao Tung University

Abstract

Let G = (V,E) be a simple connected graph with the vertex set V and the edge

set E. We have a new sharp bound for the Laplacian spectral radius of G, which

improves some known upper bounds.

Keywords: Graph, Laplacian matrix, Laplacian spectral radius.
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Chapter 1

Introduction

Let G = (V,E) be a simple connected graph with vertex set V = {v1, v2, · · · , vn}

and edge set E. Let A(G) be the adjacency matrix of G, i.e. the ij-entry of the

matrix is 1 or 0 according to whether vi and vj is adjacent or not. Denote by di =

|G1(vi)| the degree of vertex vi ∈ V (G), where G1(vi) is the set of neighbors of vi,

and let D(G)=diag(d1, d2, · · · , dn) be the diagonal matrix with entries d1, d2, · · · , dn.

Then the matrix

L(G) = D(G)− A(G)

is called the Laplacian matrix of a graph G. The Laplacian spectrum of G is

S(G) = (ℓ1(G), ℓ2(G), · · · , ℓn(G)),

where ℓ1(G) ≥ ℓ2(G) ≥ · · · ≥ ℓn(G) are eigenvalues of L(G) arranged in nonincreas-

ing order. Especially, ℓ1(G) is called Laplacian spectral radius of G. Now we

list some known upper bounds of Laplacian spectral radius, as follows.
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In 1985[1], Anderson and Morley showed the following bound

ℓ1(G) ≤ max
vi∼vj

{di + dj} , (1.1)

where vi ∼ vj means that vi and vj are adjacent. We call mi =
1

di

∑
vj∼vi

dj average

2-degree of vertex vi. For all vi ∈ V (G), we have di + mi = di +
1

di

∑
vj∼vi

dj ≤

di + max
vj∼vi

{dj} ≤ max
vj∼vi

{di + dj}. In 1998[7], Merris improved the bound (1.1), as

follows

ℓ1(G) ≤ max
vi∈V (G)

{di +mi} . (1.2)

In 2000[9], Rojo et al. showed the following upper bound

ℓ1(G) ≤ max
vi∼vj

{di + dj − |G1(vi) ∩G1(vj)|} . (1.3)

In 2001[5], Li and Pan gave a bound, as follows

ℓ1(G) ≤ max
vi∈V (G)

{√
2di(di +mi)

}
. (1.4)

In 2004[11], Zhang showed the following result, which is always better than the

bound (1.4).

ℓ1(G) ≤ max
vi∈V (G)

{
di +

√
dimi

}
. (1.5)

In this paper, we obtain a new sharp upper bound of Laplacian spectral radius

ℓ1(G), and provide some graphs that satisfy the sharp upper bound. In particular, if

G is a strongly regular graph with parameters (n, k, λ, µ), then the graph satisfies

the sharp upper bound, where strongly regular graph G with parameters (n, k, λ, µ)

means that G is a k-regular graph with n vertices and common neighbours of two

adjacent(nonadjcent) vertices is a fixed number λ(µ), respectively, and G is denoted

by srg(n, k, λ, µ). See Theorem 3.5 and Corollary 3.13 for those results.
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Chapter 2

Preliminaries

Let G = (V,E) be a simple connected graph with vertex set V = {v1, v2, · · · , vn}

and edge set E. We define Gc to be the complement of G, i.e. Gc has the same

vertex set of G and two distinct vertices of Gc are adjacent if and only if they are

not adjacent in G. Let an orientation σ of a graph G be an assignment of each

edge of G a direction to form a digraph Gσ. Let N denote the directed incidence

matrix of Gσ, i.e. N has rows indexed by the vertices and columns by edges, where

the xe-entry of N is −1, 1, or 0 when x is the head of e, the tail of e, or not on

e, respectively. Hence we have L(G) = NN⊤, which implies that L(G) is positive

semi-definite. Then we have the following facts[3].

1. ℓn(G) = 0 is an eigenvalue of L(G) corresponding to the eigenvector 1n, where

1n is the all-ones vector.

2. If X = (x1, x2, · · · , xn)
⊤ is an eigenvector of L(G) corresponding to ℓi(G)

(1 ≤ i ≤ n− 1), then
∑n

i=1 xi = 0.

3. L(G)+L(Gc) = nI−J , where I and J are identity matrix and all-ones matrix,
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respectively.

4. If X is the eigenvector of L(G) corresponding to ℓi(G) (1 ≤ i ≤ n − 1), then

X is also an eigenvector of L(Gc) corresponding to n− ℓi(G).

5. ℓi(G) ≤ n, for 1 ≤ i ≤ n.

Now, we give more definitions.

Definition 2.1. Let G = (V,E) be a simple connected graph with vertex set V =

{v1, v2, · · · , vn} and edge set E. The following notations are adopted.

1. λ(G) = min
vi∼vj

|G1(vi) ∩G1(vj)|.

2. µ(G) = min
vi�vj

|G1(vi) ∩G1(vj)|.

3. We call G a triangulation, if λ(G) > 0.

4. A planar graph is called a maximal planar graph if every pair of nonadjacent

vertices u and v of G, the graph G+ uv is nonplanar.

Remark 2.2. Let G = (V,E) be a simple connected graph. Then we have µ(G) =

λ(Gc).

Theorem 2.3. [4] If G is a maximal planar graph and |V (G)| ≥ 4, then G is a

triangulation. Moreover, λ(G) ≥ 2.

Proof. Because G is a maximal planar graph, every region in G is triangle. When

|V (G)| ≥ 4, we know that every edge in a maximal planar graph belongs to two

distinct regions. Therefore, it implies that any two adjacent vertices in G have at

least two common neighbors. On the other hand, λ(G) ≥ 2.
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In 2013, Guo et al. improved the bound (1.5) and showed the following result.

Theorem 2.4. [4, Theorem 3.1] Let G = (V,E) be a simple connected graph with

vertex set V = {v1, v2, · · · , vn} and edge set E. We define

M(G) = max
vi∈V (G)

{
2di − λ+

√
4dimi − 4λdi + λ2

2

}
,

where λ = λ(G). Then

ℓ1(G) ≤ M(G), (2.1)

In 2013, Guo et al. showed a corollary about maximal planar graph, as follows.

Corollary 2.5. [4, Theorem 3.3] If G is a maximal planar graph and |V (G)| ≥ 4,

then

ℓ1(G) 6 max
vi∈V (G)

{
di − 1 +

√
dimi − 2di + 1

}
.
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Chapter 3

Main Results

3.1 Some Corollary about Theorem 2.4

We will show two easy corollaries of Theorem 2.4.

Corollary 3.1. If G is a k-regular graph, then

ℓ1(G) 6 2k − λ,

where λ = λ(G).

Proof. Because G is a k-regular graph, we have di = mi = k, for all vi. Therefore,

ℓ1(G) ≤ max
vi∈V (G)

{
2di − λ+

√
4dimi − 4λdi + λ2

2

}
=
2k − λ+

√
4k · k − 4λk + λ2

2

=2k − λ.

Because ℓ1(G) ≤ n, we get the following corollary.
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Corollary 3.2. If G is a simple connected graph with n vertices, then ℓ1(G) ≤

min {M(G), n} .

3.2 Main Results

Now we will show our main result. First, we give a proposition, as follows.

Proposition 3.3. [8] Let G = (V,E) be a simple connected graph with vertex set

V = {v1, v2, · · · , vn} and edge set E.

1. If T = A(G)2 and T = (tij), we have tij = |G1(vi) ∩ G1(vj)| and
n∑

j=1

tij =∑
j∼i

dj = midi.

2. If X = (x1, x2, · · · , xn)
⊤ is a vector, X⊤L(G)X =

∑
j<k

vj∼vk

(xj − xk)
2.

Now, we prove the main theorem, which improves Theorem 2.4.

Theorem 3.4. Let G = (V,E) be a simple connected graph with vertex set V =

{v1, v2, · · · , vn} and edge set E. Let S(G) = (ℓ1(G), ℓ2(G), · · · , ℓn(G)) be the Lapla-

cian spectrum of G. We define

M ′(G) = max
vi∈V (G)

{
2di − λ+ µ+

√
Bi

2
: Bi ≥ 0

}

and

N ′(G) = min
vi∈V (G)

{
2di − λ+ µ−

√
Bi

2
: Bi ≥ 0

}
,

7



where Bi = 4dimi − 4(λ− µ)di + (λ− µ)2 − 4µn, λ = λ(G), and µ = µ(G). Then

N ′(G) ≤ ℓ(G) ≤ M ′(G), (3.1)

where ℓ(G) ∈ {ℓ1(G), ℓ2(G), · · · , ℓn−1(G)}.

Proof. Let X = (x1, x2, · · · , xn)
⊤ be the eigenvector of L(G) corresponding to ℓ(G).

We have

n∑
i=1

[di − ℓ(G)]2x2
i =∥(D(G)− ℓℓ(G)I)X∥2

=∥(D(G)− L(G))X∥2

=∥A(G)X∥2

=X⊤TX

=
n∑

i=1

tiix
2
i + 2

∑
j<k

tjkxjxk

=
n∑

i=1

tiix
2
i +

∑
j<k

tjk(x
2
j + x2

k − (xj − xk)
2)

=
n∑

i=1

((tii +
n∑

j=1
j ̸=i

tij)x
2
i )−

∑
j<k

vj∼vk

tjk(xj − xk)
2 −

∑
j<k
vj�vk

tjk(xj − xk)
2

≤
n∑

i=1

dimix
2
i − λ

∑
j<k

vj∼vk

(xj − xk)
2 − µ

∑
j<k
vj�vk

(xj − xk)
2

=
n∑

i=1

dimix
2
i − λX⊤L(G)X − µX⊤L(Gc)X

=
n∑

i=1

dimix
2
i − λℓ(G)∥X∥2 − µ(n− ℓ(G))∥X∥2

=
n∑

i=1

dimix
2
i − λℓ(G)

n∑
i=1

x2
i − µ(n− ℓ(G))

n∑
i=1

x2
i .

Thus, we have

n∑
i=1

[(di − ℓ(G))2 − dimi + λℓ(G) + µ(n− ℓ(G))]x2
i ≤ 0. (3.2)
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Then there must exist a vertex vi such that

(di − ℓ(G))2 − dimi + λℓ(G) + µ(n− ℓ(G))

=ℓ(G)2 − (2di − λ+ µ)ℓ(G) + (d2i − dimi + µn) ≤ 0,

which implies that

2di − λ+ µ−
√
Bi

2
≤ ℓ(G) ≤ 2di − λ+ µ+

√
Bi

2
.

Therefore,

N ′(G) ≤ ℓ(G) ≤ M ′(G).

According to Theorem 3.4, we focus on ℓ1(G) and ℓn−1(G) and have the following

theorem.

Theorem 3.5. Let G be a simple connected graph. Then

ℓ1(G) ≤ M ′(G) (3.3)

and

ℓn−1(G) ≥ N ′(G) (3.4)

We have similar corollary as Corollary 3.1 about ℓ1(G) and ℓn−1(G) on a regular

graph.

Corollary 3.6. If G is k-regular graph, then

ℓ1(G) ≤
2k − λ+ µ+

√
4k2 − 4(λ− µ)k + (λ− µ)2 − 4µn

2
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and

ℓn−1(G) ≥
2k − λ+ µ−

√
4k2 − 4(λ− µ)k + (λ− µ)2 − 4µn

2
.

It is similar to Corollary 3.2, and we have the following corollary.

Corollary 3.7. If G is a simple connected graph with n vertices, then ℓ1(G) ≤

min {M ′(G), n} .

We give an example and compare results of Theorem 2.4 and 3.5

Example 3.8. In this example, G is the Petersen graph which is srg(10, 3, 0, 1), as

follows. Hence, we have λ = 0, µ = 1, and di = 3, for any vertex vi, and we compute

..
1

.
2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10

Figure 3.1: Petersen graph

ℓ1(G) = 5.
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According to Theorem 2.4

M(G) = max
vi∈V (G)

{
2di − λ+

√
4dimi − 4λdi + λ2

2

}
=
2× 3− 0 +

√
4× 32 − 0 + 0

2

=6.

According to Theorem 3.5

M ′(G) = max
vi∈V (G)

{
2di − λ+ µ+

√
4dimi − 4(λ− µ)di + (λ− µ)2 − 4µn

2
: Bi ≥ 0

}

=
2× 3− 0 + 1 +

√
4× 32 − 4(0− 1)3 + (0− 1)2 − 4× 1× 10

2

=5.

Therefore, we have ℓ1(G) = 5 = M ′(G) ≤ M(G) = 6. According to this example,

we will prove two things, as follows

1. M ′(G) ≤ M(G), if we consider the condition ℓ1(G) ≤ n.

2. If G is a strongly regular graph, then ℓ1(G) = M ′(G).

In Theorem 3.9 and Corollary 3.13, we will prove two results about those observa-

tions.

In Theorem 3.9, we will show that our result of Corollary 3.7 is better than

Corollary 3.2.

Theorem 3.9. Let G = (V,E) be a simple connected graph with vertex set V =

{v1, v2, · · · , vn} and edge set E. Then

min {M ′(G), n} ≤ min {M(G), n} .
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Proof. We have two cases in this proof.

Case 1: When M(G) ≥ n, we have min {M(G), n} = n ≥ min {M ′(G), n}

Case 2: When M(G) < n. Let ζi be the largest root of fi(x) = (di−x)2−dimi+λx = 0

and ξi be the largest root of gi(x) = (di − x)2 − dimi + λx+ µ(n− x) = 0, for

1 ≤ i ≤ n, as Bi ≥ 0, where λ = λ(G) and µ = µ(G). Then we have

ζi =
2di − λ+

√
4dimi − 4λdi + λ2

2

and

ξi =
2di − λ+ µ+

√
4dimi − 4(λ− µ)di + (λ− µ)2 − 4µn

2
.

Hence, we can remark that M(G) = max
i

{ζi} and M ′(G) = max
i

{ξi}. Let

vi ∈ V (G).. If Bi ≥ 0, then we have

• gi(ζi) = (di − ζi)
2 − dimi + λζi + µ(n− ζi) = 0 + µ(n− ζi) > 0, because

M(G) < n implies ζi < n.

• g′i(ζi) = 2(ζi−di)+λ−µ > 2(
2di − λ

2
−di)+λ−µ = di−µ ≥ 0, because

µ = µ(G) = min
vi�vj

|G1(vi) ∩G1(vj)| ≤ min
vi∈V (G)

|G1(vi)| ≤ di, for 1 ≤ i ≤ n.

Therefore, ξi < ζi, for 1 ≤ i ≤ n, as Bi ≥ 0.

Finally, we get M ′(G) = max
i

{ξi} < M(G) = max
i

{ζi} < n.

According to those cases, we complete the proof.

3.3 Applications of Theorem 3.5

In the section, let λ = λ(G) and µ = µ(G). First, we give a trivial example on

n = 5 such that the equality in (3.3) holds.
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..

ξi

.

ζi

.

(ζi, gi(ζi))

.

y = gi(x)

Figure 3.2: compare ζi and ξi

Example 3.10. When G = K5, we have λ = 3, µ = 0, and di = 4, for any vertex

..
1
.

2
.

3

.

4

.

5

Figure 3.3: K5

vi, and we calculate the ℓ1(G) = 5. Then, according to Theorem 3.5, we get

M ′(G) =
2× 4− 3 + 0 +

√
4× 42 − 4(3− 0)4 + (3− 0)2 − 4× 0× 5

2
= 5 = ℓ1(G).

Therefore, K5 is a graph which satisfies the the equality in (3.3) .

We have the following definition about two graphs.

Definition 3.11. [6] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with

13



disjoint vertex sets. Then we define the join of two graphs G1 and G2 is G1 ∨G2 =

(V,E), where V = V1 ∪ V2 and E = E1 ∪ E2 ∪ {xy|x ∈ V1 and y ∈ V2} .

Theorem 3.12 is a useful tool to compute ℓ1(G) and eigenvector corresponding

to the join of two graphs.

Theorem 3.12. [6] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with disjoint

vertex sets and (|V1|, |V2|) = (n,m). Let λi and νj be eigenvalues of L(G1) and

L(G2) corresponding to the eigenvector vi and wj, respectively, where < λi > and

< νj > both are nonincreasing sequences, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then,

0, λi + m, νj + n, and n + m are eigenvalues of L(G1 ∨ G2) corresponding to the

eigenvector 1n+m, (v⊤i ,0⊤
m)

⊤ , (0⊤
n , w

⊤
j )

⊤ ,and (m1⊤
n ,−n1⊤

m)
⊤, respectively, for all

2 ≤ i ≤ n and 2 ≤ j ≤ m.

Now, we find some graphs such that the equality in (3.3) holds. First, the equality

in (3.2) hold if and only if

∑
j<k

vj∼vk

tjk(xj − xk)
2 = λ

∑
j<k

vj∼vk

(xj − xk)
2

and ∑
j<k
vj�vk

tjk(xj − xk)
2 = µ

∑
j<k
vj�vk

(xj − xk)
2.

It is not easy to find a sufficient and necessary condition which satisfied the above

two equations, because we must understand more about the eigenvector. We have

an obvious condition to satisfy above two equations, if |G1(vi) ∩G1(vj)| = λ(G) for

any edge vivj of G and |G1(vi) ∩ G1(vj)| = µ(G) for any edge vivj of Gc, then the

equality in (3.2) holds. Therefore, when G is a strongly regular graph with some

14



parameter (n, k, λ, µ), G make the equality in (3.2) holds, because λ or µ is a fixed

number of common neighbours of two adjacent or nonadjcent vertices, respectively.

We will show that it is not a coincidence that the Petersen graph of Example 3.8

satisfies the equality in (3.3). In Corollary 3.13, we will prove all strongly regular

graphs satisfy the equality in (3.3).

Corollary 3.13. If G is a strongly regular graph with parameters (n, k, λ, µ), then

ℓ1(G) = M ′(G) and ℓn−1(G) = N ′(G).

Proof. Because n = 1 + k +
k(k − 1− λ)

µ
, we have

2k − λ+ µ±
√

4k2 − 4(λ− µ)k + (λ− µ)2 − 4µn

2

=

2k − λ+ µ±
√

4k2 − 4(λ− µ)k + (λ− µ)2 − 4µ(1 + k +
k(k − 1− λ)

µ
)

2

=
2k − λ+ µ±

√
(λ− µ)2 + 4(k − µ)

2
.

Here

ℓ1(G) =
2k − λ+ µ+

√
(λ− µ)2 + 4(k − µ)

2

and

ℓn−1(G) =
2k − λ+ µ−

√
(λ− µ)2 + 4(k − µ)

2

are a known result about the graph srg(n, k, λ, µ). Therefore, we complete the

proof.

It is difficult to find a graph, which satisfies the equality in (3.3), though some

graphs satisfy the equality in (3.2). The following are some examples, which sat-

isfy the equality in (3.2), but the equality in (3.3) uncertainly holds. In Exam-

ple 3.14 and Example 3.15, We will show fan graphs such that the equality in
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(3.2) holds, but the equality in (3.3) does not hold. After the section, we let

ξi =
2di − λ+ µ+

√
4dimi − 4(λ− µ)di + (λ− µ)2 − 4µn

2
, then we know M ′(G) =

max
i

{ξi}.

Example 3.14. We usually call Fℓ = K1 ∨ ℓK2 a fan graph. When G = F2 the

..
1

.

4

.

2

.
3

.

5

Figure 3.4: F2

adjacency matrix A(G) and Laplacian matrix are as follows.

A(G) =



0 0 0 1 1

0 0 1 0 1

0 1 0 0 1

1 0 0 0 1

1 1 1 1 0


,

and

L(G) =



2 0 0 −1 −1

0 2 −1 0 −1

0 −1 2 0 −1

−1 0 0 2 −1

−1 −1 −1 −1 4


.
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Hence,

A(G)2 =



2 1 1 1 1

1 2 1 1 1

1 1 2 1 1

1 1 1 2 1

1 1 1 1 4


,

λ = 1 and µ = 1. According to Theorem 3.12, we get X = (1 1 1 1 −4)
⊤ is a

eigenvector corresponding to the eigenvalue ℓ1(G) = 5.

We calculate M ′(G) and the equality in (3.2) as shown in the following table.

ℓ1(G) = 5 < 8+
√
12

2
, so the inequality (3.3) does not hold. But the equality in

i di mi ξi (di − ℓ1(G))2 − dimi + λℓ1(G) + µ(n− ℓ1(G))

1 ∼ 4 2 3 3 (2− 5)2 − 2 · 3 + 1 · 5 + 1 · (5− 5) = 8

5 4 2 8+
√
12

2
≈ 5.73 (4− 5)2 − 4 · 2 + 1 · 5 + 1 · (5− 5) = −2

Table 3.1: calculate M ′(G) on F2

(3.2) holds, because
5∑

i=1

[(di − ℓ1(G))2 − dimi + λℓ1(G) + µ(n− ℓ1(G))]x2
i = 0.

Example 3.15. When G = Fℓ = K1 ∨ ℓK2, according Theorem 3.12, we have

X = (1⊤
2ℓ,−2ℓ)⊤ is an eigenvector corresponding to the eigenvalue ℓ1(G) = 2ℓ + 1,

we have following result on Table 3.2. Then we have ℓ1(G) = 2ℓ + 1 ≤ 4ℓ−1+
√
8ℓ+1

2
.

Therefore, all of Fℓ do not satisfy the equality in (3.3), but the equality in (3.2)

holds.

In Examples 3.16, we will show more graphs with n = 5 such that the equality

in (3.2) holds.
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Figure 3.5: Fℓ

i di mi ξi (di − ℓ1(G))2 − dimi + λℓ1(G) + µ(n− ℓ1(G))

1 ∼ 2ℓ 2 ℓ+ 1 3+
√
8ℓ+1
2

(2− 2ℓ− 1)2 − 2(ℓ+ 1) + 1(2ℓ+ 1) + 1 · 0 = 4ℓ2 − 4ℓ

2ℓ+ 1 2ℓ 2 4ℓ−1+
√
8ℓ+1

2
(2ℓ− 2ℓ− 1)2 − 2ℓ · 2 + 1(2ℓ+ 1) + 1 · 0 = 2− 2ℓ

Table 3.2: calculate M ′(G) on Fℓ
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K1,4 K2,3 K5

Figure 3.6: K1,4, K2,3 and K5

Example 3.16. According to Theorem 3.12, we have all graphs of this example

ℓ1(G) = 5. In the following table, we list some graphs such that the equality in (3.2)

holds, and we compare M ′(G) and ℓ1(G) on Table 3.3.

Therefore, in this example, all complete bipartite graphs, which satisfy the equal-

ity in (3.2), with n = 5 do not satisfy the equality in (3.3).
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G L(G) M ′(G) ℓ1(G)

K1,4



4 −1 −1 −1 −1

−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1



8 +
√
16

2
= 6 5

K2,3



3 0 −1 −1 −1

0 3 −1 −1 −1

−1 −1 2 0 0

−1 −1 0 2 0

−1 −1 0 0 2



8 +
√
12

2
≈ 5.73 5

K5



4 −1 −1 −1 −1

−1 4 −1 −1 −1

−1 −1 4 −1 −1

−1 −1 −1 4 −1

−1 −1 −1 −1 4


5 5

Table 3.3: compare K1,4, K2,3 and K5
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In Examples 3.17, we will show more graphs with n = 6 such that the equality

in (3.2) holds.

Example 3.17. According to Theorem 3.12, all graphs of this example have ℓ1(G) =

6. We list the result of the compare of ℓ1(G) and M ′(G) on Table 3.4. In this
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C6 K1,5 K2,4

ℓ1(G) = M ′(G) ℓ1(G) ̸= M ′(G) ℓ1(G) ̸= M ′(G)
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K3,3 K2,2,2 K6

ℓ1(G) = M ′(G) ℓ1(G) = M ′(G) ℓ1(G) = M ′(G)

Table 3.4: compare ℓ1(G) and M ′(G) with n = 6

example, we obtain the following result. If G is a complete k-partite graph, then G

does not satisfy M ′(G) = ℓ1(G), unless G is a regular graph.

Through Example 3.16 and Example 3.17, we have a corollary about complete

k-partite graph, which, as follow.

Corollary 3.18. Let G be a complete k-partite graph(k ≥ 2). Then, ℓ1(G) = M ′(G)

if and only if every part in G has the same number of vertices.
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Proof. Let G = Kc
n1

∨ Kc
n2

∨ · · · ∨ Kc
nk

, where n1 ≤ n2 ≤ · · · ≤ nk is a non-

decreasing sequence. By Theorem 3.12, we can calculate ℓ1(G) = n, where n =∑k
i=1 ni. Now, we start to compute M ′(G). First, for 1 ≤ i ≤ k, we calcu-

late di = n − ni, λ =
∑k−2

i=1 ni, µ =
∑k−1

i=1 ni = n − nk, and dimi =
∑

vj∼vi

dj =

k∑
j=1
j ̸=i

njdj =
k∑

j=1
j ̸=i

nj(n − nj) = n
k∑

j=1
j ̸=i

nj −
k∑

j=1
j ̸=i

n2
j . We recall the result of Theorem 3.5

M ′(G) = max
vi∈V (G)

{
2di − λ+ µ+

√
4dimi − 4(λ− µ)di + (λ− µ)2 − 4µn

2

}
. We let

ξi =
2di − λ+ µ+

√
4dimi − 4(λ− µ)di + (λ− µ)2 − 4µn

2
. Therefore,

ξi =
2(n− ni)− (−nk−1) +

√
B

2
= n+

√
B − (2ni − nk−1)

2
,where

B =4(n
k∑

j=1
j ̸=i

nj −
k∑

j=1
j ̸=i

n2
j)− 4(−nk−1)(n− ni) + (−nk−1)

2 − 4(n− nk)n

=4n(n− ni)− 4
k∑

j=1
j ̸=i

n2
j + 4n · nk−1 − 4nk−1ni + n2

k−1 − 4n2 + 4n · nk

=− 4
k∑

j=1
j ̸=i

n2
j − 4nk−1ni + n2

k−1 + 4n(−ni + nk−1 + nk).

In order to calculate ξi, we compare
√
B and (2ni − nk−1), as follows. We calculate

B − (2ni − nk−1)
2 = −4

n∑
j=1
j ̸=i

n2
j − 4nk−1ni + n2

k−1 + 4n(−ni + nk−1 + nk) − (4n2
i +

n2
k−1 − 4nink−1) = −4

k∑
j=1

n2
j + 4n(−ni + nk−1 + nk). We have two case to discuss

above formula.

Case 1: When i = k, B−(2ni−nk−1)
2 = −4

k∑
j=1

n2
j+4n(−nk+nk−1+nk) = −4

k∑
j=1

n2
j+

4n · nk−1 ≥ −4nk

k∑
j=1

nj + 4n · nk−1 = n(nk − nk−1) ≥ 0.

Case 2: When 1 ≤ i ≤ k−1, B− (2ni−nk−1)
2 ≥ −4

k∑
j=1

n2
j +4n(−nk−1+nk−1+nk) ≥

−4nk

k∑
j=1

nj + 4n(nk) = 0.
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On two case, we have the same conclusion, as follows.

1. B − (2ni − nk−1)
2 ≥ 0, it implies ξi = n +

√
B − (2ni − nk−1)

2
≥ n +

0

2
= n.

Therefore, M ′(G) ≥ n = ℓ1(G).

2. The equality holds on two case if and only if n1 = n2 = · · · = nk.

Hence, we complete the proof.

In Example 3.19, we have some graphs, which are not k-partite graph or strongly

regular graph, but satisfy ℓ1(G) = M ′(G).

Example 3.19. In this example, we give four graphs which satisfy the equality in

(3.3).
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Therefore, we have some graphs, which satisfy the equality in (3.3), but they are

not k-partite graph or strongly regular graph. Finally in this example, we note that

some graphs, which satisfy the equality in (3.3), but the common neighbors of any

two adjacent or nonadjacent vertices are not a fixed number.
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