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Part 0

Introduction
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Distance-regularity

Let G be a connected graph with vertex set V and diameter D.

@ For 0 <i <D and two vertices u,v € V at distance i, set
ci(u,v) :=1G1(v)NGi—1(u)|,
a;(u,v) : =|G1(v)NG;i(u)|, and
b,-(u,v) = ]Gl(v) ﬂGi+l(u)’.

These parameters are well-defined if they are independent of the
choice of u,v. In this case we use the symbols ¢;, a; and b; for short.

A connected graph G with diameter D is called distance-regular
if the above-mentioned parameters are well-defined.
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@ Assume that adjacency matrix A has d 41 distinct eigenvalues

Ao > A1 > ... > Ay with corresponding multiplicities mg =1, my, ...

my.
@ The spectrum of G is denoted by the multiset
sp G={Ay" A", ..., A}

@ The parameter d is called the spectral diameter of G.

Note that D <d.
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Question: Is the distance-regularity of a graph determined by its
spectrum?

Answer: In general, the answer is negative.

&

The Hamming 4-cube and the Hoffman graph
(distance-regular) (c2 is not well-defined)
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We have known that the distance-regularity of a graph is in general not
determined by its spectrum.

Question: Under what additional conditions, the answer is positive?

Answer: The spectral excess theorem.
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The spectral excess theorem gives a quasi-spectral characterization for a
regular graph to be distance-regular.

Spectral excess theorem (Fiol and Garriga, 1997)

Let G be a regular graph with d+ 1 distinct eigenvalues. Then,
kq < pa(Ao), and equality is attained if and only if G is distance-regular. OJ

@ ky: average excess (combinatorial aspect) — the mean of the numbers
of vertices at distance d from each vertex

@ p4(Ao): spectral excess (algebraic aspect) — a number which can be
computed from the spectrum

Therefore, besides the spectrum, a simple combinatorial property suffices
for a regular graph to be distance-regular.
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The Hamming 4-cube and the Hoffman graph
(ka = 1= pa(0)) (ke =1/2 < 1= pa(h))
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Spectral excess theorem (Fiol and Garriga, 1997)

Let G be a regular graph with d + 1 distinct eigenvalues. Then,
ks < pa(Ao), and equality is attained if and only if G is distance-regular. [J

@ An example will be given to demonstrates that this theorem cannot
directly apply to nonregular graphs.

@ Thus, a ‘weighted’ version of the spectral excess theorem is given in
order to make it applicable to nonregular graphs.
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Using spectral excess theorem, van Dam and Haemers proved the
following odd-girth theorem for regular graphs.

Odd-girth theorem (van Dam and Haemers, 2011)
A connected regular graph with d + 1 distinct eigenvalues and odd-girth
2d + 1 is distance-regular.

O

@ In the same paper, they posed the question to determine
whether the regularity assumption can be removed.

@ Moreover, they showed that the answer is affirmative for the case
d+1=3, and claimed to have proofs for the cases d + 1 € {4,5}.

@ For an application of the ‘weighted’ spectral excess theorem,
we show that the regularity assumption is indeed not necessary.

10/38



We then apply this line of study to the class of bipartite graphs.

@ The distance-2 graph G? of G is the graph whose vertex set is the
same as of G, and two vertices are adjacent in G? if they are of
distance 2 in G.

@ For a connected bipartite graph, the halved graphs are the two
connected components of its distance-2 graph.

e For an integer h < d, we say that G is weighted /-punctually
distance-regular if A, = pp(A).
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Proposition (BCN, Proposition 4.2.2, p.141)

The halved graphs of a bipartite distance-regular graph are
distance-regular. O

Problem (The converse statement)

Suppose that G is a connected bipartite graph, and both halved graphs are
distance-regular. Can we say that G is distance-regular? If not, what
additional conditions do we need?
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Answer:

@ Three examples will be given to show that the converse does not hold,
that is, a connected bipartite graph whose halved graphs are
distance-regular may not be distance-regular.

@ We will give a quasi-spectral characterization of a connected bipartite
weighted 2-punctually distance-regular graph whose halved graphs are
distance-regular.

@ In the case the spectral diameter is even we show that the graph
characterized above is distance-regular.
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Part |

A spectral excess theorem for nonregular graphs
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Notations

@ Let G be a connected graph of order n and diameter D.

@ Assume that adjacency matrix A has d 41 distinct eigenvalues
Ao > A1 > ... > Ay with corresponding multiplicities 1 = mq, my, ...,
mg.

@ The spectrum of G is denoted by the multiset
sp G={A) A", ... A}

@ The parameter d is called the spectral diameter of G.

Note that D <d.
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Two kinds of inner products

o Consider the vector space R,[x] consisting of all real polynomials of
degree at most d with the inner product

(p,qa)a :=tr(p(A)q(A))/n =Y (p(A) 0q(A))u/n,

u,y
for p,q € Ry[x], where o is the entrywise product of matrices.

@ For any two n x n symmetric matrices M,N over R, define the inner

product
1
<M,N> = ;Z(MON),']',
ij

where “o" is the entrywise product of matrices.

o Thus (p.q)c = (p(A4).q(A)) for p,q € Rylx].
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Two kinds of polynomials

@ By the Gram—Schmidt procedure, there exist polynomials
P0,D1,---,Pa in Rg[x] satisfying

deg pi=1i and (Pi,pj)e = 0ijpi(Ao)
for 0 <1i,j <d, where 5”- =1 if i=j, and 0 otherwise.

These polynomials are called the predistance polynomials of G.

@ The polynomial

is called the Hoffman polynomial of G.

@ The sum of all predistance polynomials gives the Hoffman polynomial,
i.e.,
H=po+p1+-+pa
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@ average excess (combinatorial aspect): the mean of the numbers of
vertices at distance d from each vertex

@ spectral excess (algebraic aspect): a number which can be computed
from the spectrum

The parameter

fo= 1 ¥ [Galw)]

ueVv

is called the average excess of G, and the parameter p;(Ay) is called the
spectral excess of G.
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Lemma (Fiol and Garriga, 1997)

The spectral excess ps(Ao) can be expressed in terms of the spectrum,
which is
d 1 71
n
pado)=5 ==
(%o) n3 (lg‘) miir,?)
where m; =[], |Ai — Aj| for 0 <i<d. O

Spectral excess theorem (Fiol and Garriga, 1997)

Let G be a regular graph with d+ 1 distinct eigenvalues. Then,
kg < pa(Ao), and equality is attained if and only if G is distance-regular. OJ
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@ For any two n x n symmetric matrices M,N over R, let

(N, M)

v

ProjyM :=

denote the projection of M onto Span{N}.

o Let A; be the distance-i matrix, i.e., an n X n matrix with rows and
columns indexed by the vertex set V such that

(Ai)uv:{ 1, if d(u,v) =i

0, else.

In particular, Ag =1 and A| = A.
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Spectral excess theorem (Fiol and Garriga, 1997)

I__et G be a regular graph with d + 1 distinct eigenvalues. Then,
ka < pa(Ao), and equality is attained if and only if G is distance-regular.

Sketch of proof (an elegant proof, Fiol, Gago and Garriga, 2010)

o Show that Proj,,p4(A) = A4, which implies that kq < pa(Ao).
@ Observe that equality holds if and only if A; = ps(A).

@ Show that A; = ps(A) if and only if A; = p;(A) for 0 <i<d,
that is, G is distance-regular. O
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The following example shows that the regularity assumption of G in the
spectrum excess theorem is necessary, that is, spectral excess theorem
cannot directly apply to nonregular graphs.

Let G be a path of three vertices. Note that D =d =2, %2 =2/3 and
p2(Ag) = 1/2. This shows that kg < pg(Ag) does not hold for nonregular
graphs.
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Preparation for the ‘weighted’ version

o Let o be the eigenvector of A (usually called the Perron vector)
corresponding to Ag such that o/ @ = n and all entries of a are
positive. Note that a = (1,1,...,1)" iff G is regular.

@ For a vertex u, let o, be the entry corresponding to u in «.

The matrix A; with rows and columns indexed by the vertex set V
such that

A —
(Ai)ur 0 otherwise

~ {ocuoav if 9(u,v) =1,

is called the weighted distance-i matrix of G.

Note that Z,- =0ifi>D.
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@ Recall that a = (1,1,...,1)" iff G is regular.
If G is regular, then Avi is binary and hence the distance-i matrix A;.

Thus, A; can be regarded as a ‘weighted’ version of A;.
@ Define g, = (&,&-). If G is regular, then

~ - o~ 1 _
8s = (Aa,Aq) = (Aa.Ad) = = Y |Ga(u)| = kq.
ueVaG

Hence, the parameter §; can be viewed as a generalization of
the average excess k.
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Spectral excess theorem and its ‘weighted’ version

Recall that

Spectral excess theorem (Fiol and Garriga, 1997)

Let G be a regular graph with d +1 distinct eigenvalues. Then,
ka < pa(Ao), and equality is attained if and only if G is distance-regular. [J

Weighted spectral excess theorem (Lee and Weng, 2012)

Let G be a graph with d+ 1 distinct eigenvalues. Then,
04 < pa(Ao), and equality is attained if and only if G is distance-regular.
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Weighted spectral excess theorem (Lee and Weng, 2012)

Let G be a graph with d + 1 distinct eigenvalues. Then, gd < pa(A), and
equality is attained if and only if G is distance-regular.

Sketch of proof

@ Show that Proj; (pa(A)) = Ay, which implies that &, < pa(Ao).
Observe that equality holds if and only if Ay = pa(A).
Show that Ay = py(A) if and only if A; = p;(A) for 0 <i<d.
Show that A9 = po(A) if and only if G is regular.

Finally, we deduce that equality holds if and only if A; = p;(A) for
0<i<d, that is, G is distance-regular. O

v
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Revisiting the example that G is a path of three vertices.

Example
Let G be a path of three vertices.

o Note that D=d =2, ko =2/3 and py(Ao) = 1/2. This shows that
kq < pia(Ao) does not hold for nonregular graphs, that is, the
regularity assumption in the spectrum excess theorem is necessary.

o Note that the Perron vector o = (v/3/2,v/6/2,4/3/2)", and

~ 0 0 3/4
A=[0 0 o0
3/4 0 0

Hence &; = 3/8 < 1/2=py(Ao), that is, the weighted spectral excess
theorem can apply to nonregular graphs.
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An application: graphs with odd-girth 2d + 1

Odd-girth theorem (van Dam and Haemers, 2011)

A connected regular graph with d + 1 distinct eigenvalues and odd-girth
2d + 1 is distance-regular. O

Odd-girth theorem (Lee and Weng, 2012)

A connected graph with d + 1 distinct eigenvalues and odd-girth 2d +1 is
distance-regular.

| A\

Sketch of proof

Show that gd = pa(Xo), and the result follows by weighted spectral excess
theorem. 0)
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Part 1l

A characterization of bipartite distance-regular graphs
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@ The distance-2 graph G* of G is the graph whose vertex set is the
same as of G, and two vertices are adjacent in G? if they are of
distance 2 in G.

@ For a connected bipartite graph, the halved graphs are the two
connected components of its distance-2 graph.

e For an integer h < d, we say that G is weighted /-punctually
distance-regular if A, = pp(A).
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Proposition (BCN, Proposition 4.2.2, p.141)

The halved graphs of a bipartite distance-regular graph are
distance-regular. O

Problem (The converse statement)

Suppose that G is a connected bipartite graph, and both halved graphs are
distance-regular. Can we say that G is distance-regular? If not, what
additional conditions do we need?
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Three counterexamples

Example 1 (weighted 2-punctually distance-regular & odd spectral diameter)

The Mébius—Kantor graph, with spectrum {3',v3*,13,(~1)%,(—v3)*,(~3)'}.
eD=4<5=d,
o A;=pi(A) for i € {0,1,2,4}, and
@ both halved graphs the complete multipartite graphs K>
(with spectrum {6',0* (—2)}), which are distance-regular.
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Example 2 (not weighted 2-punctually distance-regular & even spectral diameter)

Consider the Hoffman graph with spectrum {4!,24 0, (—2)% (—4)'},
which is cospectral to the Hamming 4-cube but not distance-regular.
e D=d—=4,
o A; = pi(A) for i € {0,1,3} (i #2), and
@ its two halved graphs are the complete graph Kg and the complete
multipartite graph K722, which are both distance-regular.
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Example 3 (not weighted 2-punctually distance-regular & odd spectral diameter)
Consider the graph obtained by deleting a 10-cycle from the complete
bipartite graph K55, with spectrum
(3L, ((V5+1)/27%,(V5-1)/2)%, (V5 +1) /2, (V5 -1)/2)%,(-3)'}.

e D=3<5=d,

o A; = pi(A) for i€ {0,1} (i #2), and

@ both halves graphs are the complete graphs Ks, which are

distance-regular.
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The remaining case

We have considered three counterexamples.

Example 1 (weighted 2-punctually distance-regular & odd spectral diameter)
Example 2 (not weighted 2-punctually distance-regular & even spectral diameter)

Example 3 (not weighted 2-punctually distance-regular & odd spectral diameter)

Note that the remaining case is that

G is weighted 2-punctually distance-regular with even spectral diameter.

Question: How about the remaining case?

Answer: Under these additional conditions, the converse statement is true.
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Theorem (Lee and Weng, 2014)

Suppose that G is a connected bipartite graph, and both halved graphs are
distance-regular. If G is weighted 2-punctually distance-regular with even
spectral diameter, then G is distance-regular.

Sketch of proof

o By the weighted 2-punctually distance-regularity assumption,
e G is regular, and
e both halved graphs have the same spectrum, and thus have the same
(pre)distance-polynomials.

@ By the above results and the even spectral diameter assumption,

° &= pa(Ap), and the result follows by (weighted) spectral excess
theorem. d

v
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Thank you for your listening!
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