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Part 0

Introduction
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Distance-regularity

Let G be a connected graph with vertex set V and diameter D.

For 0 ≤ i ≤ D and two vertices u,v ∈V at distance i, set

ci(u,v) : = |G1(v)∩Gi−1(u)|,
ai(u,v) : = |G1(v)∩Gi(u)|, and
bi(u,v) : = |G1(v)∩Gi+1(u)|.

These parameters are well-defined if they are independent of the
choice of u,v. In this case we use the symbols ci, ai and bi for short.

A connected graph G with diameter D is called distance-regular
if the above-mentioned parameters are well-defined.
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Assume that adjacency matrix A has d +1 distinct eigenvalues
λ0 > λ1 > .. . > λd with corresponding multiplicities m0 = 1, m1, . . .,
md .

The spectrum of G is denoted by the multiset

sp G = {λ m0
0 ,λ m1

1 , . . . ,λ md
d }.

The parameter d is called the spectral diameter of G.

Note that D ≤ d.
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Question: Is the distance-regularity of a graph determined by its
spectrum?

Answer: In general, the answer is negative.
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The Hamming 4-cube and the Hoffman graph
(distance-regular) (c2 is not well-defined)
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We have known that the distance-regularity of a graph is in general not
determined by its spectrum.

Question: Under what additional conditions, the answer is positive?

Answer: The spectral excess theorem.
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The spectral excess theorem gives a quasi-spectral characterization for a
regular graph to be distance-regular.
.
Spectral excess theorem (Fiol and Garriga, 1997)
..

......

Let G be a regular graph with d +1 distinct eigenvalues. Then,
kd ≤ pd(λ0), and equality is attained if and only if G is distance-regular. �

kd: average excess (combinatorial aspect) – the mean of the numbers
of vertices at distance d from each vertex

pd(λ0): spectral excess (algebraic aspect) – a number which can be
computed from the spectrum

Therefore, besides the spectrum, a simple combinatorial property suffices
for a regular graph to be distance-regular.
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. .

The Hamming 4-cube and the Hoffman graph

(kd = 1 = pd(λ0)) (kd = 1/2 < 1 = pd(λ0))
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.
Spectral excess theorem (Fiol and Garriga, 1997)
..

......

Let G be a regular graph with d +1 distinct eigenvalues. Then,
kd ≤ pd(λ0), and equality is attained if and only if G is distance-regular. �

An example will be given to demonstrates that this theorem cannot
directly apply to nonregular graphs.

Thus, a ‘weighted’ version of the spectral excess theorem is given in
order to make it applicable to nonregular graphs.
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Using spectral excess theorem, van Dam and Haemers proved the
following odd-girth theorem for regular graphs.
.
Odd-girth theorem (van Dam and Haemers, 2011)
..

......

A connected regular graph with d +1 distinct eigenvalues and odd-girth
2d +1 is distance-regular. �

In the same paper, they posed the question to determine
whether the regularity assumption can be removed.

Moreover, they showed that the answer is affirmative for the case
d +1 = 3, and claimed to have proofs for the cases d +1 ∈ {4,5}.

For an application of the ‘weighted’ spectral excess theorem,
we show that the regularity assumption is indeed not necessary.
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We then apply this line of study to the class of bipartite graphs.

The distance-2 graph G2 of G is the graph whose vertex set is the
same as of G, and two vertices are adjacent in G2 if they are of
distance 2 in G.

For a connected bipartite graph, the halved graphs are the two
connected components of its distance-2 graph.

For an integer h ≤ d, we say that G is weighted h-punctually
distance-regular if Ãh = ph(A).
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.
Proposition (BCN, Proposition 4.2.2, p.141)
..

......

The halved graphs of a bipartite distance-regular graph are
distance-regular. �

.
Problem (The converse statement)
..

......

Suppose that G is a connected bipartite graph, and both halved graphs are
distance-regular. Can we say that G is distance-regular? If not, what
additional conditions do we need?
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Answer:

Three examples will be given to show that the converse does not hold,
that is, a connected bipartite graph whose halved graphs are
distance-regular may not be distance-regular.

We will give a quasi-spectral characterization of a connected bipartite
weighted 2-punctually distance-regular graph whose halved graphs are
distance-regular.

In the case the spectral diameter is even we show that the graph
characterized above is distance-regular.
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Part I

A spectral excess theorem for nonregular graphs
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Notations

Let G be a connected graph of order n and diameter D.

Assume that adjacency matrix A has d +1 distinct eigenvalues
λ0 > λ1 > .. . > λd with corresponding multiplicities 1 = m0, m1, . . .,
md .

The spectrum of G is denoted by the multiset

sp G = {λ m0
0 ,λ m1

1 , . . . ,λ md
d }.

The parameter d is called the spectral diameter of G.

Note that D ≤ d.
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Two kinds of inner products

Consider the vector space Rd [x] consisting of all real polynomials of
degree at most d with the inner product

⟨p,q⟩G := tr(p(A)q(A))/n = ∑
u,v
(p(A)◦q(A))uv/n,

for p,q ∈ Rd [x], where ◦ is the entrywise product of matrices.

For any two n×n symmetric matrices M,N over R, define the inner
product

⟨M,N⟩ :=
1
n ∑

i, j
(M ◦N)i j,

where “ ◦ ” is the entrywise product of matrices.

Thus ⟨p,q⟩G = ⟨p(A),q(A)⟩ for p,q ∈ Rd [x].
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Two kinds of polynomials

By the Gram–Schmidt procedure, there exist polynomials
p0, p1, . . . , pd in Rd[x] satisfying

deg pi = i and ⟨pi, p j⟩G = δi j pi(λ0)

for 0 ≤ i, j ≤ d, where δi j = 1 if i = j, and 0 otherwise.

These polynomials are called the predistance polynomials of G.

The polynomial
H := n

d

∏
i=1

x−λi

λ0 −λi

is called the Hoffman polynomial of G.

The sum of all predistance polynomials gives the Hoffman polynomial,
i.e.,

H = p0 + p1 + · · ·+ pd.
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average excess (combinatorial aspect): the mean of the numbers of
vertices at distance d from each vertex

spectral excess (algebraic aspect): a number which can be computed
from the spectrum

The parameter

kd :=
1
n ∑

u∈V
|Gd(u)|

is called the average excess of G, and the parameter pd(λ0) is called the
spectral excess of G.
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.
Lemma (Fiol and Garriga, 1997)
..

......

The spectral excess pd(λ0) can be expressed in terms of the spectrum,
which is

pd(λ0) =
n

π2
0

(
d

∑
i=0

1
miπ2

i

)−1

,

where πi = ∏ j ̸=i |λi −λ j| for 0 ≤ i ≤ d. �

.
Spectral excess theorem (Fiol and Garriga, 1997)
..

......

Let G be a regular graph with d +1 distinct eigenvalues. Then,
kd ≤ pd(λ0), and equality is attained if and only if G is distance-regular. �
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For any two n×n symmetric matrices M,N over R, let

ProjNM :=
⟨N,M⟩
⟨N,N⟩

N

denote the projection of M onto Span{N}.

Let Ai be the distance-i matrix, i.e., an n×n matrix with rows and
columns indexed by the vertex set V such that

(Ai)uv =

{
1, if ∂ (u,v) = i;
0, else.

In particular, A0 = I and A1 = A.

20 / 38



.
Spectral excess theorem (Fiol and Garriga, 1997)
..

......

Let G be a regular graph with d +1 distinct eigenvalues. Then,
kd ≤ pd(λ0), and equality is attained if and only if G is distance-regular.

.
Sketch of proof (an elegant proof, Fiol, Gago and Garriga, 2010)
..

......

Show that ProjAd
pd(A) = Ad , which implies that kd ≤ pd(λ0).

Observe that equality holds if and only if Ad = pd(A).

Show that Ad = pd(A) if and only if Ai = pi(A) for 0 ≤ i ≤ d,
that is, G is distance-regular. �
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The following example shows that the regularity assumption of G in the
spectrum excess theorem is necessary, that is, spectral excess theorem
cannot directly apply to nonregular graphs.

.
Example
..

......

Let G be a path of three vertices. Note that D = d = 2, k2 = 2/3 and
p2(λ0) = 1/2. This shows that kd ≤ pd(λ0) does not hold for nonregular
graphs.
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Preparation for the ‘weighted’ version

Let α be the eigenvector of A (usually called the Perron vector)
corresponding to λ0 such that α tα = n and all entries of α are
positive. Note that α = (1,1, . . . ,1)t iff G is regular.

For a vertex u, let αu be the entry corresponding to u in α.

The matrix Ãi with rows and columns indexed by the vertex set V
such that

(Ãi)uv =

{
αuαv if ∂ (u,v) = i,
0 otherwise

is called the weighted distance-i matrix of G.

Note that Ãi := 0 if i > D.
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Recall that α = (1,1, . . . ,1)t iff G is regular.

If G is regular, then Ãi is binary and hence the distance-i matrix Ai.

Thus, Ãi can be regarded as a ‘weighted’ version of Ai.

Define δ̃i := ⟨Ãi, Ãi⟩. If G is regular, then

δ̃d = ⟨Ãd , Ãd⟩= ⟨Ad ,Ad⟩=
1
n ∑

u∈V G
|Gd(u)|= kd .

Hence, the parameter δ̃d can be viewed as a generalization of
the average excess kd .
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Spectral excess theorem and its ‘weighted’ version

Recall that
.
Spectral excess theorem (Fiol and Garriga, 1997)
..

......

Let G be a regular graph with d +1 distinct eigenvalues. Then,
kd ≤ pd(λ0), and equality is attained if and only if G is distance-regular. �

.
Weighted spectral excess theorem (Lee and Weng, 2012)
..

......

Let G be a graph with d +1 distinct eigenvalues. Then,
δ̃d ≤ pd(λ0), and equality is attained if and only if G is distance-regular.
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.
Weighted spectral excess theorem (Lee and Weng, 2012)
..

......

Let G be a graph with d +1 distinct eigenvalues. Then, δ̃d ≤ pd(λ0), and
equality is attained if and only if G is distance-regular.

.
Sketch of proof
..

......

Show that ProjÃd
(pd(A)) = Ãd , which implies that δ̃d ≤ pd(λ0).

Observe that equality holds if and only if Ãd = pd(A).

Show that Ãd = pd(A) if and only if Ãi = pi(A) for 0 ≤ i ≤ d.

Show that Ã0 = p0(A) if and only if G is regular.

Finally, we deduce that equality holds if and only if Ai = pi(A) for
0 ≤ i ≤ d, that is, G is distance-regular. �

26 / 38



Revisiting the example that G is a path of three vertices.
.
Example
..

......

Let G be a path of three vertices.

Note that D = d = 2, k2 = 2/3 and p2(λ0) = 1/2. This shows that
kd ≤ pd(λ0) does not hold for nonregular graphs, that is, the
regularity assumption in the spectrum excess theorem is necessary.

Note that the Perron vector α = (
√

3/2,
√

6/2,
√

3/2)t , and

Ã2 =

 0 0 3/4
0 0 0

3/4 0 0

 .

Hence δ̃d = 3/8 < 1/2 = pd(λ0), that is, the weighted spectral excess
theorem can apply to nonregular graphs.
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An application: graphs with odd-girth 2d +1

.
Odd-girth theorem (van Dam and Haemers, 2011)
..

......

A connected regular graph with d +1 distinct eigenvalues and odd-girth
2d +1 is distance-regular. �

.
Odd-girth theorem (Lee and Weng, 2012)
..

......

A connected graph with d +1 distinct eigenvalues and odd-girth 2d +1 is
distance-regular.

.
Sketch of proof
..

......

Show that δ̃d = pd(λ0), and the result follows by weighted spectral excess
theorem. �
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Part II

A characterization of bipartite distance-regular graphs
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The distance-2 graph G2 of G is the graph whose vertex set is the
same as of G, and two vertices are adjacent in G2 if they are of
distance 2 in G.

For a connected bipartite graph, the halved graphs are the two
connected components of its distance-2 graph.

For an integer h ≤ d, we say that G is weighted h-punctually
distance-regular if Ãh = ph(A).
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.
Proposition (BCN, Proposition 4.2.2, p.141)
..

......

The halved graphs of a bipartite distance-regular graph are
distance-regular. �

.
Problem (The converse statement)
..

......

Suppose that G is a connected bipartite graph, and both halved graphs are
distance-regular. Can we say that G is distance-regular? If not, what
additional conditions do we need?
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Three counterexamples

.
Example 1 (weighted 2-punctually distance-regular & odd spectral diameter)
..

......

The Möbius–Kantor graph, with spectrum {31,
√

3
4
,13,(−1)3,(−

√
3)4,(−3)1}.

D = 4 < 5 = d,

Ãi = pi(A) for i ∈ {0,1,2,4}, and
both halved graphs the complete multipartite graphs K2,2,2,2
(with spectrum {61,04,(−2)3}), which are distance-regular.

.
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.
Example 2 (not weighted 2-punctually distance-regular & even spectral diameter)
..

......

Consider the Hoffman graph with spectrum {41,24,06,(−2)4,(−4)1},
which is cospectral to the Hamming 4-cube but not distance-regular.

D = d = 4,

Ãi = pi(A) for i ∈ {0,1,3} (i ̸= 2), and

its two halved graphs are the complete graph K8 and the complete
multipartite graph K2,2,2,2, which are both distance-regular.

. .
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.
Example 3 (not weighted 2-punctually distance-regular & odd spectral diameter)
..

......

Consider the graph obtained by deleting a 10-cycle from the complete
bipartite graph K5,5, with spectrum
{31,((

√
5+1)/2)2,((

√
5−1)/2)2,((−

√
5+1)/2)2,((−

√
5−1)/2)2,(−3)1}.

D = 3 < 5 = d,

Ãi = pi(A) for i ∈ {0,1} (i ̸= 2), and

both halves graphs are the complete graphs K5, which are
distance-regular.

.
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The remaining case

We have considered three counterexamples.

Example 1 (weighted 2-punctually distance-regular & odd spectral diameter)
Example 2 (not weighted 2-punctually distance-regular & even spectral diameter)

Example 3 (not weighted 2-punctually distance-regular & odd spectral diameter)

Note that the remaining case is that

G is weighted 2-punctually distance-regular with even spectral diameter.

Question: How about the remaining case?

Answer: Under these additional conditions, the converse statement is true.
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.
Theorem (Lee and Weng, 2014)
..

......

Suppose that G is a connected bipartite graph, and both halved graphs are
distance-regular. If G is weighted 2-punctually distance-regular with even
spectral diameter, then G is distance-regular.

.
Sketch of proof
..

......

By the weighted 2-punctually distance-regularity assumption,

G is regular, and
both halved graphs have the same spectrum, and thus have the same
(pre)distance-polynomials.

By the above results and the even spectral diameter assumption,

δ̃d = pd(λ0), and the result follows by (weighted) spectral excess
theorem. �
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Thank you for your listening!
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