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中文摘要

群試設計 (group testing) 為應用數學的一個分支, 其應用層面包含了錯誤更正碼、 基因

(DNA) 測試等。 本論文著重在探討t× (t + 1) d̄-可分離群式設計的可能性。 首先我們考慮投影平

面的點線關係矩陣, 並證明刪除任一列可以產生t× (t + 1) d̄-可分離群矩陣, 當t等於d2 + d且d為

質數的次方。 接著我們證明當t小於d2 + d且d為2或3時並不存在d̄-可分離群矩陣。
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The minimum value of t for t × (t + 1) d̄-separable

matrix: d = 2 or 3

Student: Wen-Hwa Hsiao Advisor: Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

Group testing is a branch of applied mathematics and has several applications, such

as error correcting codes, DNA testing, etc. This thesis investigates the existence of a

t × (t + 1) d̄-separable matrix for some t and d.

First, we consider the point-block incidence matrix of the projective plane of order d

and show that removing any row from the matrix yields a t× (t + 1) d̄-separable matrix

as t = d2 + d and d is a prime power. Then, we show that if t < d2 + d and d = 2 or 3,

there is no t × (t + 1) d̄-separable matrix.
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Chapter 1

Introduction

Group testing is a branch of mathematics investing a problem about the determining

a defective set among several items by testing several subsets of these items with some

constraints. For instance, given n distinct items and the knowledge that there are at

most d defective items among n ones, we want to find the all detective items via several

testings, which is a prototype problem (called (d, n) problem) in combinatorial group

testing. At the beginning, a fundamental problem is that the existence of a solution

for the (d, n) problem and an trivial solution for the existence is to test a item each

time and, after n testings, we can identify all defective items. However, when some

constraints are imposed, the existence of a solution may no long be trivial. We may, for

example, want to find the minimum number of testings in (d, n) problem such that all

defective items can be identified.

As can be seen, there are two ways to do the testing and the group testing is usually

categorized as adaptive or nonadaptive group testing. In adaptive group testing, a

testing is done in order and a testing can be designed based on the previous results while

all testing are done at once in nonadaptive group testing. Both of them are investigated

in a lot of literatures and we focus on the later in this thesis. One application of

nonadaptive group testing is the testing of DNA sequence. In this field, a nonadaptive

group testing is preferred because it takes a lot of time to do a testing and we can do

several testing at the same time in nonadaptive group testing. Hence, it takes less time

1



to find defective items compared with that using adaptive group testing algorithms. For

other applications, the readers can refer to [1] and reference therein.

In this thesis, we want to investigate the following conjecture:

Conjecture 1.1. There is no d-separable matrix of size t × n with t < n < d2 + d + 1.

The definition of d-separable matrix in the following section. This conjecture is

proposed in [2] and the case d = 2 is proved by considering all possibilities of a matrix.

The main results of this thesis is that this conjecture is true if d = 2 or d = 3. Do notice

that the case d = 2 has been proved before; however, it is quite long. In this thesis, we

reprove this case in a shorter and elegant way.
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Chapter 2

Preliminary results of group testing

In this chapter, we introduce the notations, terminology, and some properties about

group testing we will used in this thesis. Most of the notations come from [1] and the

reader who is familiar with them can skip this chapter.

2.1 Definitions and notations

Definition 2.1.1. Boolean sum

The boolean sum of two 0-1 column vectors C1 and C2 is the element-wise or operation

of C1 and C2.

Example 2.1.2. Suppose x = [0, 0, 1, 1]T , and y = [0, 1, 0, 1]T , where T denotes the

transpose operation. Then, the boolean sum of x and y is [0, 1, 1, 1]T

In this thesis, a matrices we considered is 0-1 matrix unless stated otherwise. A t×n

matrix is usually denoted by M, where Ri and Cj denote the ith row and jth column of

M , respectively. For convenience, U(S) denotes the boolean sum of S, where S is the

set of columns in a matrix M .

Example 2.1.3. Suppose

M =









0 1 0 1
0 0 1 0
1 1 0 0
1 1 1 1









.
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Then, C1 = [0, 0, 1, 1]T , C2 = [1, 0, 1, 1]T , C3 = [0, 1, 0, 1]T and C4 = [1, 0, 0, 1]T .

Suppose S = {C1, C3, C4}. We have U(S) = [1, 1, 1, 1]T .

Definition 2.1.4. (d-separable and d̄-separable)

1. M is d-separable if the boolean sum of d columns are all distinct.

2. M is d̄-separable if the boolean sum of i columns are all distinct, 1 ≤ i ≤ d.

Example 2.1.5. Suppose

M =





0 1 1
1 0 1
1 1 0





It is clear that M is 1-separable. However, it is not 2-separable because U({C1, C2}) =

U({C2, C3}).

From the definition of d-separable and d̄-separable, it is clear that if a matrix is

d̄-separable, it is also d-separable.

To investigate a property of a d̄-separable matrix, it is found that the notion of

d-disjunct is useful and the formal definition of d-disjunct is given below.

Definition 2.1.6. (d-disjunct)

A t×n matrix M is d-disjunct if the union of any d columns does not contain any other

column.

Similar to the study of extremal set in combinatorics, it is interesting to study the

existence of a t × n d-disjunct matrix M with some conditions. For instance, given d

and n, what is the minimum value of t such that a t × n d-disjunct matrix M exists.

For such problem, the extremal value is denoted by t(d, n), which is summary in the

following definition.

Definition 2.1.7. (t(d, n))

t(d, n) is the minimum number of rows required for a d-disjunct matrix with n columns.
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2.2 Properties of d-separable, d̄-separable, and d-

disjunct

In this section, we show some properties of d-separable, d̄-separable, and d-disjunct.

Moreover, the relationship among d-separable, d̄-separable, and d-disjunct will be sum-

mary in the end of this section.

Property 2.2.1. If M is d̄-separable, then M is d-separable. Moreover, if M is d-

separable, then M is k-separable for 1 ≤ k ≤ d.

Proof. By the definition, it is clear.

Property 2.2.2. If all t× n matrix M are not d̄−separable, then any k × n M′ matrix

is not d-separable for 1 ≤ k ≤ t.

Proof. Suppose these exists a k × n d-separable matrix M′. Since k = t is a trivial

case, we assume k < t. Without loss of generality, we assume k is maximal such that

all (k + 1) × t matrix are not d̄−separable. Then, add a all zero row at the bottom of

M′ and we get a (k + 1) × n matrix which is d̄−separable, a contradiction to that k is

maximal.

Property 2.2.3. If a t×(n+1) matrix is d-separable, then there exists a t×n d-separable

matrix.

Proof. Suppose there exists a t × (n + 1) matrix is d−separable. Then, removing any

one column yields a d−separable t × n matrix.

Lemma 2.2.4. (d + 1)-separable implies d-disjunct.

Proof. Suppose there is a (d + 1)-separable matrix M but not d-disjunct. Then there

exists a column set S such that S contains Ci for some column Ci /∈ S and |S| = d.

Notice that U(S) = U(S
⋃

{Ci}) and it implies that M is not (d + 1)-separable, a

contradiction.
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Lemma 2.2.4 implies that if there exists no t × n d-disjunct matrix, there does not

exist any t × n (d + 1)-separable matrix.

Lemma 2.2.5. If a matrix M is d-disjunct, then M is d-separable.

Proof. Suppose M is not d-separable. Then, there exists two distinct columns sets S1

and S2 such that U(S1) = U(S2) and 1 ≤ |S1| ≤ |S2| ≤ d. Since S1 6= S2, there is a

column C ∈ S2 \ S1. Then, C is contained by U(S1), which implies that M is not |S1|-

disjunct. Because |S1| ≤ d, this also implies that M is not d disjunct, a contradiction.

Based on the definition 2.1.4 and lemma 2.2.5, the relationship among d-separable,

d̄-separable, and d-disjunct can be represented as below.

d − disjunct ⇒ d̄ − separable ⇒ d − separable
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Chapter 3

Deterministic designs from

symmetric BIBD

3.1 Construction method

Before we discuss the deterministic designs, we first give some basic definitions.

Definition 3.1.1. A design is a pair(X, A) such that the following properties are satis-

fied:

1. X is a set of elements called points.

2. A is a collection of nonempty subsets of X called blocks.

Definition 3.1.2. Let v, k, and λ be positive integers such that v > k ≥ 2. A (v,

k,λ)-balanced incomplete block design ((v, k,λ)-BIBD) is a design (X,A) such that the

following properties are satisfied:

1. |X| = v and |A| = b.

2. Each block contains exactly k points.

3. Each pair of distinct points is contained in exactly λ blocks.

A BIBD is called a symmetric BIBD if b = v.

Property 3.1.3. For a symmetric (v,k,λ)-BIBD, each pair of distinct block has λ points

in common.
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Proof. See the proof of Theorem 2.2 in [3].

The representation of a design through a 0-1 matrix is given in the following defini-

tion.

Definition 3.1.4. Let (X, A) be a design where X = {x1, · · · , xv} and A = {A1, · · · , Ab}.

The incidence matrix of (X, A) is the v × b 0-1 matrix M defined by the rule

mi,j =

{

1 if xi ∈ Aj

0 if xi /∈ Aj.

where mi,j denotes the element in the ith row and the jth column of M.

Now, we are ready to show the deterministic designs from symmetric BIBD. The

construction method is first to find a (v, k, λ) symmetric BIBD and its corresponding

incidence matrix M. Then, remove one of row in M and we get a (v− 1)× v
(⌈

k
λ

⌉

− 1
)

-

separable matrix. The rationality of this construction is based on the theorem 3.1.8.

Lemma 3.1.5. A symmetric (v, k, λ)-BIBD is
(⌈

k
λ

⌉

− 1
)

-disjunct.

Proof. According to the property of symmetric BIBD, any two columns intersect in

exactly λ points and every column contains exactly k 1s. Suppose the statement is not

true. Then, there exists a set S of
⌈

k
λ

⌉

− 1 columns and another column Cj with weight

k such that Cj ⊆ U(S). By Pigeonhold principle, there exists a column Ck in S such

that the interesection of Cj and Ck has λ + 1 1s, which is contradiction to the definition

of λ.

Lemma 3.1.6. Removing any row from a d-disjunct matrix M yields a d-separable

matrix.

Proof. Without loss of generality, we assume that the first row is removed, yielding

a submatrix M′. Suppose that M′ is not d-separable matrix, which means that there

are two distinct columns sets S1 and S2 such that |S1| = |S2| = d and U(S1) = U(S2).

Now, consider U(S1) and U(S2) in M. Since M is d-disjunct, U(S1) 6= U(S2) in M.

8



In other words, they are difference in the first row in M. Without loss of generality,

we assume that the first row of U(S1) is 1 and that of U(S2) is 0 in M. Then, we can

find that U(S1) contains U(S2). Because d ≥ 1, the above statement implies that U(S1)

contains U(S2) and there is a column in S2 \ S1 (they are distinct and have the same

size) contained in U(S1), a contradiction to that M is d-disjunct.

Theorem 3.1.7. Let M be a d-separable matrix and 1 ≤ k ≤ d − 1. Then M is

(k + 1)-separable if and only if M is k-disjunct.

Proof.

(⇒) Suppose that M is not k-disjunct. Then, there exist a column C and a set

S1 of k other columns such that C is contained in U(S1). Let S2 = S1

⋃

{C}. Then,

|S2| = k + 1 and U(S1) = U(S2). Hence, M is not (k + 1)-separable.

(⇐) Suppose that M is not (k + 1)-separable. Then, there exist two distinct set

S1 and S2 such that U(S1) = U(S2) and 1 ≤ |S1| ≤ |S2| ≤ k + 1. Because M be a

d-separable matrix, the latter condition can be relaxed to 1 ≤ |S1| < |S2| ≤ k + 1. This

implies that there exists a C ∈ S2 \ S1 and C is contained in U(S2) = U(S1), which

means that M is not k-disjunct as |S1| ≤ k.

Theorem 3.1.8. The matrix M′ obtained by removing a row of the incidence matrix of

a symmetric (v, k, λ)-BIBD is
(⌈

k
λ

⌉

− 1
)

-separable.

Proof. By lemma 3.1.6, M′ is
(⌈

k
λ

⌉

− 1
)

-separable. If M′ is
(⌈

k
λ

⌉

− 2
)

-disjunct, then

we are done by theorem 3.1.7. Suppose the statement is not true. Then, there exists a

set S of
(⌈

k
λ

⌉

− 2
)

columns in M and a column Cj of M′ contained in S. Do notice that

Cj contains k or k − 1 1s and any two columns of M′ intersect in λ or λ − 1 positions

(that is, the intersection of any two columns of M′ has λ or λ − 1 1s).

Case A: k = aλ for some positive integer a,

If k = aλ for some positive integer a, we have
⌈

k
λ

⌉

λ = k. Then,
(⌈

k
λ

⌉

− 2
)

λ = k−2λ.

Because λ ≥ 1, by Pigenhold principle, there exists one of columns in S intersecting with

9



Cj in λ + 1 positions, which is a contradiction.

Case B: k 6= aλ for some positive integer a

If k 6= aλ for some positive integer a, we have
(⌈

k
λ

⌉

− 2
)

λ = k + 1 − 2λ. Do notice

that λ ≥ 2 because λ = 1 is considered in case A. Hence,
(⌈

k
λ

⌉

− 2
)

λ = k+1−2λ ≤ k−3.

Again, by Pigenhold principle, we have a contradiction.

3.2 Examples of the construction method

From theorem 3.1.8, we should find a (v, k, λ) symmetric BIBD and we get a (v− 1)× v
(⌈

k
λ

⌉

− 1
)

-separable matrix. Unfortunately, given arbitrary v, k, and λ, there is not

necessary that a symmetric BIBD exits. However, some families of symmetric BIBD

have been proposed and it is proved that there exists a symmetric BIBD under some

conditions. In this thesis, we consider a well-known family of symmetric BIBD: finite

projective plane.

Definition 3.2.1. A (n2 + n + 1, n + 1, 1)-BIBD with n ≥ 2 is called a finite projective

plane of order n.

It can be proved that a projective plane of order n exists if n is a prime power [3].

First, we give a 6 × 7 2-separable matrix through a finite projective plane of order 2.

Example 3.2.2. A finite projective plane of order 2.

A finite projective plane of order 2 is a (7, 3, 1)-BIBD. The point set is X = {1, 2, 3, 4, 5, 6, 7}

and the block set is A = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}.

The incidence matrix is

M =





















1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0





















10



Removing the last row of M, we have

M′ =

















1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1

















Based on the theorem 3.1.8, M′ is 2-separable.

The following example give a 12 × 13 3-separable matrix.

Example 3.2.3. A finite projective plane of order 3.

A finite projective plane of order 3 is a (13, 4, 1)-BIBD. The point set is X =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} and the block set is

A = {{1, 2, 4, 10}, {2, 3, 5, 11}, {3, 4, 6, 12}, {4, 5, 7, 13}, {5, 6, 8, 1}, {6, 7, 9, 2}, {7, 8, 10, 3},

{8, 9, 11, 4}, {9, 10, 12, 5}, {10, 11, 13, 6}, {11, 12, 1, 7}, {12, 13, 2, 8}, {13, 1, 3, 9}}. The

incidence matrix is

M =













































1 0 0 0 1 0 0 0 0 0 1 0 1
1 1 0 0 0 1 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 0 0 0 1 0 1 1 0 0 0 1
1 0 0 0 0 0 1 0 1 1 0 0 0
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 0 1 0 0 0 0 0 1 0 1 1












































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Removing the last row of M, we have

M′ =









































1 0 0 0 1 0 0 0 0 0 1 0 1
1 1 0 0 0 1 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 0 0 0 1 0 1 1 0 0 0 1
1 0 0 0 0 0 1 0 1 1 0 0 0
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0









































Based on the theorem 3.1.8, M′ is 3-separable.

To sum up, theorem 3.1.8 and the existence of finite projective plane of order n imply

that we can find a (n2 +n)× (n2 +n+1) n-separable matrix if n is prime power. Hence,

the minimium number of t for the existence of a t× (t+1) d-separable matrix is smaller

than d2 + d + 1 when d is a prime power.

12



Chapter 4

Main result

In previous chapter, we show that the minimum number of t for the existence of a

t× (t+1) d-separable matrix is smaller than or equal to d2 + d when d is a prime power

and it has been shown in [2] that the minimum number is d2 + d when d = 2. However,

the proof in [2] is quite long and is done case by case. In this section, we reprove it

by the properties of 2-separable matrix, which yields a more shorter and simple proof.

Moreover, we show that d = 3 is also hold.

4.1 d=2

We start the proof with a property of 1-disjunct matrix. The following lemma is known

as Sperner’s theorem [4].

Lemma 4.1.1. Given t, if there exists a t × n 1-disjunct matrix M, then n ≤
(

t
⌊ t

2
⌋

)

.

Proof. Let T be the set of row indices and A be a family of subsets of T such that no

set in A is a subset of another set in A. Hence, A forms the 1-disjunct matrix. Denote

the number of sets of size k in A by ak. We want to show that

n = |A| =

t
∑

k=0

ak ≤

(

t

⌊ t
2
⌋

)

by double counting the number of permutations of T . Clearly, there are t! ways to

permute T . On the other hand, given an element of A, say A1, we can permute the

elements in A1 and then A \ A1. There are k!(t − k)! way to do so if the size of A1 is

13



k. Do notice that we keep the permutation order of A1 and then A \ A1. By doing so,

each such permutation will be correspond to an element in A. If an permutation could

be correspond to at least two elements in A, then one will be a subset of the other,

contradicting to the definition of A. Therefore, the number of permutations through

this procedure is

∑

A1∈A

= |A1|!(n − |A!|)! =

t
∑

k=0

akk!(t − k)!

This number is upper bounded by the number of all permutations, t! and we have the

following inequality:

t
∑

k=0

akk!(t − k)! ≤ t!,

or equivalently

t
∑

k=0

ak
(

t
k

) ≤ 1.

Because
(

t
k

)

is maximum when k = ⌊t/2⌋, we have

t
∑

k=0

ak
(

t
⌊t/2⌋

) ≤

t
∑

k=0

ak
(

t
k

) ≤ 1,

or equivalently

t
∑

k=0

ak ≤

(

t

⌊t/2⌋

)

Hence, if a t × n matrix is 1-disjunct, then n ≤
(

t
⌊t/2⌋

)

.

In the case d = 2, t is smaller than 6. Do notice that any 2-separable matrix is also a

1-disjunct matrix. By lemma 4.1.1, there is no t× (t+1) 1-disjunct matrix for t = 1, 2, 3

because
(

t
⌊ t

2
⌋

)

= t < t + 1 for t = 1, 2, 3.

For t = 4 and 5, it is found that the following concept and associated property are

useful.

Definition 4.1.2. (an isolated column)

A column is called isolated if there exists a row incident to it but not to any other

column.

14



Example 4.1.3. Suppose

C =





1 0 0
0 1 0
1 1 1



 (4.1)

Then, C1 and C2 are isolated.

Do notice that if a t × n d-separable (d-disjunct) matrix having an isolated column

C1 and d > 1, then removing C1 and the row incident to C1 yields a (t − 1) × (n − 1)

d-separable (d-disjunct) matrix. Hence, we can assume that a t × n d-separable (d-

disjunct) matrix does not have an isolated column if all (t− 1)× (n− 1) matrix are not

d-separable (d-disjunct).

Lemma 4.1.4. A nonisolated column in a d-disjunct matrix has weight at least d + 1.

Proof. Suppose there exists a column C1 with weight at most d. Do notice that for

any position of 1 in C1, there exists a column having 1 at the same position. Since C1

is weight at most d, there exists at most such d columns and the union of these columns

contains C1, a contradiction.

Due to the fact that there is no 3 × 4 2-separable matrix, and if there is a 4 × 5

2-separable matrix M, we can assume that M does not have an isolated column and the

weight of each column in M is at least 2. If the weight of each column in M is at most

1, then it shows that there is no 4×5 2-separable matrix M and this sufficient condition

is provided by the following lemma.

Lemma 4.1.5. For a t × n 2-separable matrix M, each column has weight at most

t − k − 1 where k = max (⌊log2(n − 1)⌋ , 0).

Proof. It is sufficient to suppose there is a column C with weight t− k. Then, without

loss of generality, we assume that the position of 0 in C is in the last k position. For these

k position, we have 2k way to put 0 and 1. Because n > 2k, by Pigeonhole principle,

there exist two columns C1 and C2 such that the last k elements of them are the same.
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In this case, we have U({C1, C}) = U({C2, C}). This contradicts to the definition of

2-separable.

To investigate the case: t = 5, we also need the following lemma.

Lemma 4.1.6. For a t× n 2-separable matrix M, if the weight of each column in M is

either 2 or 3, then n ≤ t(t + 1)/6.

Proof. The proof of this lemma is the same as that of Theorem 3.7.4 in [1] and, for

self-contained of this thesis, we prove this again.

Do notice that n is equal to the number of columns with weight 2 and 3. Suppose the

number of columns with weight 2 is p. Then, these p columns generate 2p row indices

(these indices could not be distinct). Due to the definition of 2-separable, if two pairs of

indices {x, y} and {x, z} are columns of M, there does not exist a column C ′ such that

the y-th and z-th row of C ′ are 1. To find the number of columns with weight 3, the

column with weight 3 should satisfy the above condition.

First, we find the number of pairs that share an index. If 2p − t ≤ 0, there exists at

least 0 such pairs. This lower bound is tight since it is possible that these 2p row indices

are all distinct. If 2p− t > 0, we can put 1 in t rows and any other indices yields a pair

that share an index with one column. Hence, there are at least 2p−t such pairs. If there

is a row having zero in all columns, there are at least 2p− t+1 such pairs with the same

reason. To sum up, the number of pairs that share an index is at least max(2p − t, 0).

Hence, the number of pairs that destroy the definition of 2-separable with the p

columns having weight 2 is at least p + max(2p − t, 0). Therefore, the number of pairs

that can be contained in a column with weight 3 is at most

(

t

2

)

− p − max(2p − t, 0) ≤

(

t

2

)

− 3p + t

It is clear that a column C ′ with weight 3 can contain at least 3 such pairs. Hence, the

number of columns with weight 3 is at most (
(

t
2

)

−3p+t)/3 and n ≤ p+(
(

t
2

)

−3p+t)/3 =

t(t − 1)/6 + t/3 = t(t + 1)/6.
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According to lemma 4.1.4 we can show that if there exists a 5×6 2-separable matrix

M, the weight of any column in M is 2. In addition, from lemma 4.1.5, the weight of

M is at most 2. Therefore, the weight of any column in M is 2. From lemma 4.1.6,

the maximum value of n is 5(5 + 1)/6 = 5 < 6 = t + 1. Hence, M is not a 2-separable

matrix.

From the above discussions, we show that there exists no t × (t + 1) 2-separable

matrix for t ≤ 5 and the proof is finished.

4.2 d=3

The following theorem shows that there exists no t × (t + 1) 2-disjunct matrix if t ≤ 8.

Therefore, there exists no t× (t + 1) 3-separable matrix if t ≤ 8 by lemma lemma 2.2.4.

Theorem 4.2.1. t(2, n) = n if n ≤ 9

Proof. See [5].

Lemma 4.2.2. For a t×n 2-disjunct matrix M, each column has weight at most t−k−1

1’s if n >
(

k
⌊k

2
⌋

)

+ 1.

Proof. We prove this by contrapositive. It is sufficient to suppose there is a column

C1 with weight t − k. Without loss of generality, we assume that the position of 0 in

C1 is in the last k position. Then, remove the C1 and the first t − k rows in M, we

have a k × (n − 1) matrix M′. Since M is 2-disjunct matrix, M′ must be 1-disjunct

matrix. Otherwise, there exists a column C2 contained in another column C3 in M ′ and

C2 is contained in U({C3, C1}) in M , a contradiction. From lemma 4.1.1, it requires

n − 1 ≤
(

k
⌊k

2
⌋

)

and we are done.

Lemma 4.2.3. For a d-separable matrix M, removing a column C in M and all rows

intersecting it yields a (d − 1)-separable matrix M′.
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Proof. Suppose M′ is not a (d − 1)-separable matrix M′. Then there exists two set

of columns S1, S2 such that U(S1) = U(S2) and 1 ≤ |S1|, |S2| ≤ d − 1. However,

U(S1

⋃

{C1}) = U(S2

⋃

{C1}) and 1 ≤ |S1

⋃

{C1}|, |S2

⋃

{C1}| ≤ d, a contradiction.

Lemma 4.2.4. There is no 9 × 10 3-separable matrix.

Proof. Based on lemma 4.2.2, a s × (s + 1) 3-separable matrix M has weight at most

s − k − 1 if s >
(

k
⌊k

2
⌋

)

. For s = 9, the maximum k such that the inequality holds is 4.

Hence, for a 9×10 3-separable matrix, each column has weight at most four (9−4−1 = 4)

by lemma 2.2.4.

Moreover, because any 8×9 matrix is not 3-separable matrix, any 9×10 3-separable

matrix is not isolated. Therefore, from lemma 2.2.4 and 4.1.4, each column has weight

at least 3.

If there is a column with weight 4, then removing this column and all rows intersecting

it yields a 5 × 9 2-separable matrix M′ from lemma 4.2.3. However, it has been shown

that there is no 5 × 6 2-separable matrix, which shows that there is no column having

weight 4 and any column in M has weight 3.

Up to now, we show that each column in M has weight 3. Suppose there are two

columns C1 and C2 having weight 3 and and they are disjoint. Then, by lemma 4.2.3, C1

and C2 and all rows intersecting them yields a 3 × 8 1-separable matrix M′. However,

it is impossible because
(

3
1

)

+
(

3
2

)

+
(

3
3

)

= 3 + 3 + 1 = 7 < 8 (the number of column).

Now, let M′ be the 6× 9 matrix obtained by removing the first column and all rows

intersecting the first column. Then, each column of M′ has weight at most 2. If a column

of M′ has weight 3, we have disjoint two columns columns and it has been shown that

it is impossible. By lemma 4.2.3, M′ is 2-separable.

Suppose M′ has a column Ck having weight 1 in the ith row, for some integer i. If

this column does not intersect with other columns, removing this column and kth row

from yields a 5 × 8 2-separable matrix, which is impossible since there is no 5 × 6 2-

separable matrix. If there exists a column C ′
k intersecting with Ck, then Ck is contained
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in U({C1, C
′
k}), which shows that M is not 2-disjunct and not a 3-separable. Hence,

each column in M′ has weight 2.

Since M′ is 2-separable, the columns which we chosen have
(

9
1

)

+
(

9
2

)

= 45 conditions.

On the other hand, there are 9 boolean sums consisting one column having weight 2 (M′

is 6 × 9). Because the boolean sum of two columns has weight at most 4 and at least 3

(M′ is 2-separable with constant weight 2), there are
(

6
3

)

+
(

6
4

)

= 20 + 15 = 35 boolean

sums involving two columns. Therefore, we have 9 + 35 = 44 results. Since the number

of results is smaller than the number of conditions, M′ must be not a 2-separable matrix.

From the discussion above, we are done.

Lemma 4.2.5. There is no 10 × 11 3-separable matrix.

Proof. Based on lemma 4.2.2, a 10 × 11 3-separable matrix M has weight at most

10−k−1 if 10 >
(

k
⌊k

2
⌋

)

. Hence, for a 10×11 3-separable matrix, each column has weight

at most 5. Moreover, from Lemma 4.1.4, each column has weight at least 3.

If there is a column having weight 5, then removing this column and all rows inter-

secting it yields a 5× 10 2-separable matrix M′ from lemma 4.2.3. However, it has been

shown that there is no 5 × 6 2-separable matrix, which shows that there is no column

having weight 5.

Suppose there are two columns C1 and C2 having weight 4 and they are disjoint.

Then, by lemma 4.2.3, removing C1 and C2 and all rows intersecting them yields a 2×9

1-separable matrix M′. However, it is impossible because
(

2
1

)

+
(

2
2

)

= 1+2 = 3 < 9 (the

number of column).

Similarly, suppose there are two columns C1 and C2 having weight 4 and they inter-

sect in only one position (or w(C1) = 4, w(C2) = 3, and they are disjoint). Then, by

lemma 4.2.3, removing C1 and C2 and all rows intersecting them yields a 3×9 1-separable

matrix M′. However, it is impossible because
(

3
1

)

+
(

3
2

)

+
(

3
3

)

= 3 + 3 + 1 = 7 < 9 (the

number of column).

Hence, if there is a column having weight 4, then removing this column and all
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rows intersecting it yields a 6 × 10 2-separable matrix M′ from lemma 4.2.3 and M′

has weight at most 2. Recall that M ′ is not isolated and 2-separable matrix, implying

1-disjunct matrix. Hence, M ′ has weight at least 2. In fact, there is no such 2-separable

matrix because there are
(

10
1

)

+
(

10
2

)

= 55 conditions and we have only
(

6
3

)

+
(

6
4

)

+ 10 =

20 + 15 + 10 = 45 possible ways to be a boolean sum of two or one column. Up to

now, we have prove that each column of M has weight 3. Without loss of generality,

we assume that the first column C1 has 1 in the first 3 rows. Then, removing the first

column and the first 3 rows yields a 7 × 10 2-separable matrix M′. Notice that each

column of M′ has weight at most 3 and at least 1. If there is a column C2 with weight

1 in the fourth row, then there does not exist a column C3 having 1 in the fourth row

because M′ is 1-disjunct. This implies that C2 is a isolated column in M (C1 has zero

in the fourth row) and this is a contradiction. Hence, each column of M′ has weight 2

or 3. By lemma 4.1.6, we have n = 7(7 + 1)/6 = 28/3 < 10 and M′ does not exist.

Therefore, there exists no 10 × 11 3-separable matrix with constant weight 3.

From the above discussions, this lemma is proved.

Lemma 4.2.6. There is no 11 × 12 3-separable matrix M.

Proof. Based on lemma 4.2.2 and 2.2.4, a t× (t + 1) 3-separable matrix M has weight

at most t−k−1 if t >
(

k
⌊k

2
⌋

)

. For t = 11, the maximum k such that the inequality holds

is 5. Hence, for a 11 × 12 3-separable matrix, the weight of each column is at most five

(11 − 5 − 1 = 5).

In addition, any 10 × 11 matrix is not 3-separable matrix; therefore, any 11 × 12 3-

separable matrix is not isolated. From lemma 2.2.4 and 4.1.4, the weight of each column

is at least three.

Suppose there are two columns C1 and C2 with weight 5. If they are disjoint, then

removing C1, C2, and all rows intersecting them yields a 1 × 10 1-separable matrix,

which is impossible. Now, suppose they intersect in t positions only and following the

same procedure, we have a (1 + t) × 10 1-separable matrix. In this case, we require
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∑min (1+t,5)
k=1

(

(1+t)
k

)

> 10 (by lemma 4.1.1), which is hold when t ≥ 3.

Now, removing C1 and all row intersecting it yields a 2-separable matrix M′. Since

the original matrix is not isolated, M′ is not isolated and, by lemma 2.2.4 and 4.1.4,

each column has weight at least two. This implies that C2 can intersect C1 at most 3

positions (t ≤ 3). Hence, we could assume that each column of M′ has weight 2. Since

M′ is 6×11 2-separable, we require 11 ≤ 6(6+1)/6 by lemma 4.1.6, which is impossible.

Hence, there are no two or more columns with weight 5.

Suppose C2 has weight 4. Then, it is equivalent to the case that C2 has weight 5

and C1 and C2 intersect at least in a position. Following the same discussion, it can be

proved that there is no such C2. Similarly, we can also prove that there is no column

with weight 3. In conclusion, there is no column with weight 5 in M.

Now, suppose there is a column C1 with weight 4. If there is another column C2 with

weight 4 and C2 is disjoint with C1, removing them and all the rows intersecting them

gives a 3 × 10 1-separable matrix M2. Since
(

3
1

)

+
(

3
2

)

+
(

3
3

)

= 7 < 10, there is no such

M2. Let M1 be the matrix by removing C1 and all rows intersect it. Then, each column

of M1 is at least 2 because M1 is 2-separable matrix and M1 is not isolated. Moreover,

since there are no columns with weight 4 and disjoint in M, each column of M1 is at

most 3. In this case, from lemma 4.1.6, we require 11 < 7(7 + 1)/6, which is impossible.

Hence, there is no column with weight 4 in M.

Up to now, we show that if M is a 11 × 12 3-separable matrix, it must be a matrix

with constant weight 3. Notice that any pair of two columns C1, C2 must share at most

one row. If they intersect in two rows, then removing C1 and all rows intersect C1 yields

a 2-separable matrix M1 having a column with weight 1. However, we know that any

column in M1 has at least weight 2, a contradiction.

Because any two columns share at most one row and M is constant weight 3, there

are at most five 1s in a row. To show that M is impossible to be 3-separable matrix,

we first consider a row with five 1s. Without loss of generality, we have the following
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structure.




































1 1 1 1 1
1
1

1
1

1
1

1
1

1
1





































Up to permutation, there is only one way for the sixth column and we have the following

structure.




































1 1 1 1 1
1 1
1

1 1
1

1 1
1

1
1

1
1





































Case 1. C7 has 1 in the second row.

There are three subcases in this case.

Subcase 1.




































1 1 1 1 1
1 1 1
1

1 1
1 1

1 1
1 1

1
1

1
1




































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It can be check that U(C1, C2, C3) = U(C1, C6, C7).

Subcase 2.




































1 1 1 1 1
1 1 1
1

1 1
1 1

1 1
1

1 1
1

1
1





































It can be check that U(C2, C3, C7) = U(C3, C6, C7).

Subcase 3.




































1 1 1 1 1
1 1 1
1

1 1
1

1 1
1

1 1
1

1 1
1





































It is 3-separable. Hence, we consider the all possibilities of C8. Do notice that it is

impossible that C8 has 1 in the second row. If C8 has 1 in the second row, it has the

structure discussed in subcase 1 or subcase 2. Therefore, we start our discussion with 1

in the third row.
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Case a.




































1 1 1 1 1
1 1 1
1 1

1 1 1
1

1 1
1 1

1 1
1

1 1
1





































It can be check that U(C1, C3, C8) = U(C1, C6, C8).

Case b.




































1 1 1 1 1
1 1 1
1 1

1 1 1
1

1 1
1

1 1 1
1

1 1
1





































It can be check that U(C1, C2, C7) = U(C2, C7, C8).

Case c.




































1 1 1 1 1
1 1 1
1 1

1 1 1
1

1 1
1

1 1
1 1

1 1
1





































It can be check that U(C1, C3, C8) = U(C3, C6, C8).
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Case d.




































1 1 1 1 1
1 1 1
1 1

1 1
1 1

1 1
1 1

1 1
1

1 1
1





































It can be check that U(C1, C2, C3) = U(C1, C6, C8).

Case e.




































1 1 1 1 1
1 1 1
1 1

1 1
1 1

1 1
1

1 1
1 1

1 1
1





































It can be check that U(C1, C6, C8) = U(C2, C6, C8).

From the discussion of case a-e, it is shown that there is no 1 in the third row. It is

impossible as the is no isolated column in M. Hence, we finish the case 1.

Case 2. C7 has 1 in the third row.

In this case, there are five subcases.
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Subcase 1.




































1 1 1 1 1
1 1
1 1

1 1 1
1

1 1
1 1

1
1

1
1





































It can be check that U(C1, C3, C7) = U(C1, C6, C7).

Subcase 2.




































1 1 1 1 1
1 1
1 1

1 1 1
1

1 1
1

1 1
1

1
1





































It can be check that U(C1, C3, C7) = U(C3, C6, C7).

Subcase 3.




































1 1 1 1 1
1 1
1 1

1 1
1 1

1 1
1 1

1
1

1
1





































It can be check that U(C1, C2, C3) = U(C1, C6, C8).
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Subcase 4.




































1 1 1 1 1
1 1
1 1

1 1
1 1

1 1
1

1 1
1

1
1





































It can be check that U(C1, C6, C7) = U(C2, C6, C7).

Subcase 4.




































1 1 1 1 1
1 1
1 1

1 1
1

1 1
1

1 1
1

1 1
1





































It can be check that it is 3-separable.

Now, consider the structure of C8.

Case a.




































1 1 1 1 1
1 1
1 1

1 1 1
1

1 1
1 1

1 1 1
1

1 1
1




































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It can be check that U(C1, C3, C8) = U(C1, C6, C8).

Case b.




































1 1 1 1 1
1 1
1 1

1 1 1
1

1 1
1 1

1 1
1 1

1 1
1





































It can be check that U(C1, C3, C8) = U(C1, C6, C8).

Case c.




































1 1 1 1 1
1 1
1 1

1 1
1 1

1 1
1 1

1 1 1
1

1 1
1





































It can be check that U(C2, C6, C8) = U(C3, C6, C8).

Case d.




































1 1 1 1 1
1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1




































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It can be check that U(C2, C6, C8) = U(C3, C6, C8) and we finish the case 2.

From the above discussions, we conclude that there is no row with five 1s. In addition,

there is no case involving C5 in the above discussions. This implies that there is no row

with four 1s. Hence, any row has at most three 1s. Yet, it is impossible for M because

M is a constant weight 3 matrix. We have to put 3 × 12 = 36 1s in M but there are at

most 3 × 11 = 33 positions for us to choose.

From the discussion above, we are done.

From lemma 4.2.4-4.2.6, we have the following main theorem.

Theorem 4.2.7. The minimum number of t for the existence of a t× (t+1) d-separable

matrix is d2 + d when d = 3.
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