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The minimum value of ¢ for ¢ x (t + 1) d-separable
matrix: d =2 or 3

Student: Wen-Hwa Hsiao Advisor: Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University
Hsinchu, Taiwan 30050

Abstract

Group testing is a branch of applied mathematics and has several applications, such
as error correcting codes, DNA testing, etc. This thesis investigates the existence of a
t x (t + 1) d-separable matrix for some t and d.

First, we consider the point-block incidence.matrix of the projective plane of order d
and show that removing any row from the matrix yields a ¢ x (¢ + 1) d-separable matrix
as t = d? + d and d is a prime power. Then, we show that if t < d*> + d and d = 2 or 3,

there is no ¢ x (t + 1) d-separable matrix.
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Chapter 1

Introduction

Group testing is a branch of mathematics investing a problem about the determining
a defective set among several items by testing several subsets of these items with some
constraints. For instance, given n distinct items and the knowledge that there are at
most d defective items among n ones, we want to find the all detective items via several
testings, which is a prototype problem (called (d,n) problem) in combinatorial group
testing. At the beginning, a fundamentaliproblem is that the existence of a solution
for the (d,n) problem and an trivial:golution for the existence is to test a item each
time and, after n testings, we can identify-all defective items. However, when some
constraints are imposed, the existence of a;selution may no long be trivial. We may, for
example, want to find the minimum number of testings in (d,n) problem such that all
defective items can be identified.

As can be seen, there are two ways to do the testing and the group testing is usually
categorized as adaptive or nonadaptive group testing. In adaptive group testing, a
testing is done in order and a testing can be designed based on the previous results while
all testing are done at once in nonadaptive group testing. Both of them are investigated
in a lot of literatures and we focus on the later in this thesis. One application of
nonadaptive group testing is the testing of DNA sequence. In this field, a nonadaptive
group testing is preferred because it takes a lot of time to do a testing and we can do

several testing at the same time in nonadaptive group testing. Hence, it takes less time



to find defective items compared with that using adaptive group testing algorithms. For
other applications, the readers can refer to [1] and reference therein.

In this thesis, we want to investigate the following conjecture:
Conjecture 1.1. There is no d-separable matrix of size t x n with ¢t <n < d®> 4+ d + 1.

The definition of d-separable matrix in the following section. This conjecture is
proposed in [2] and the case d = 2 is proved by considering all possibilities of a matrix.
The main results of this thesis is that this conjecture is true if d = 2 or d = 3. Do notice
that the case d = 2 has been proved before; however, it is quite long. In this thesis, we

reprove this case in a shorter and elegant way.



Chapter 2

Preliminary results of group testing

In this chapter, we introduce the notations, terminology, and some properties about
group testing we will used in this thesis. Most of the notations come from [1] and the

reader who is familiar with them can skip this chapter.

2.1 Definitions and notations

Definition 2.1.1. Boolean sum
The boolean sum of two 0-1 column vectors Cy and € is the element-wise or operation

of Cl and Cg.

Example 2.1.2. Suppose z = [0,0,1, 1]T, and y = [0, 1,0, 1]T, where T denotes the

transpose operation. Then, the boolean sum of x and y is [0, 1,1, 1]T

In this thesis, a matrices we considered is 0-1 matrix unless stated otherwise. A t xn
matrix is usually denoted by M, where R; and C; denote the ith row and jth column of
M, respectively. For convenience, U(S) denotes the boolean sum of S, where S is the

set of columns in a matrix M.

Example 2.1.3. Suppose

—_ -0 O
—_ = O
_ O = O
_ O O =



Then, Cy = [0,0,1,1]7, Cy = [1,0,1,1]7, C5 = [0,1,0,1]” and Cy = [1,0,0,1]".
Suppose S = {C}, C3,Cy}. We have U(S) = [1,1,1,1]T.

Definition 2.1.4. (d-separable and d-separable)
1. M is d-separable if the boolean sum of d columns are all distinct.
2. M is d-separable if the boolean sum of i columns are all distinct, 1 < i < d.

Example 2.1.5. Suppose

M =

— = O
_ o =

1
1
0

It is clear that M is 1-separable. However, it is not 2-separable because U({Cy, Cy}) =
U({Cs, Cs}).

From the definition of d-separable and d-separable, it is clear that if a matrix is
d-separable, it is also d-separable.
To investigate a property of a d-separable matrix, it is found that the notion of

d-disjunct is useful and the formal definition of-d-disjunct is given below.

Definition 2.1.6. (d-disjunct)
A t x n matrix M is d-disjunct if the union of any d columns does not contain any other

column.

Similar to the study of extremal set in combinatorics, it is interesting to study the
existence of a t x n d-disjunct matrix M with some conditions. For instance, given d
and n, what is the minimum value of ¢ such that a t x n d-disjunct matrix M exists.
For such problem, the extremal value is denoted by t(d,n), which is summary in the

following definition.

Definition 2.1.7. (t(d,n))

t(d,n) is the minimum number of rows required for a d-disjunct matrix with n columns.



2.2 Properties of d-separable, d-separable, and d-
disjunct

In this section, we show some properties of d-separable, d-separable, and d-disjunct.
Moreover, the relationship among d-separable, d-separable, and d-disjunct will be sum-

mary in the end of this section.

Property 2.2.1. If M is d-separable, then M is d-separable. Moreover, if M is d-

separable, then M is k-separable for 1 < k < d.
Proof. By the definition, it is clear. O

Property 2.2.2. If all t x n matriz M are not d—separable, then any k x n M’ matriz

s not d-separable for 1 < k <'t.

Proof. Suppose these exists a k x n d-separable matrix M’. Since k = t is a trivial
case, we assume k < t. Without loss of generality, we assume k is maximal such that
all (k+ 1) x t matrix are not d—separable. Then, add a all zero row at the bottom of
M’ and we get a (k + 1) x n matrix which“is d—separable, a contradiction to that k is

maximal. O

Property 2.2.3. If a t x (n+1) matriz is d-separable, then there exists atxn d-separable

matriz.

Proof. Suppose there exists a t X (n + 1) matrix is d—separable. Then, removing any

one column yields a d—separable ¢ x n matrix. O

Lemma 2.2.4. (d + 1)-separable implies d-disjunct.

Proof. Suppose there is a (d 4 1)-separable matrix M but not d-disjunct. Then there
exists a column set S such that S contains C; for some column C; ¢ S and |S| = d.

Notice that U(S) = U(SUJ{C;}) and it implies that M is not (d + 1)-separable, a

contradiction. O



Lemma 2.2.4 implies that if there exists no t x n d-disjunct matrix, there does not

exist any ¢ x n (d + 1)-separable matrix.
Lemma 2.2.5. If a matriz M is d-disjunct, then M is d-separable.

Proof. Suppose M is not d-separable. Then, there exists two distinct columns sets S;
and Sy such that U(S;) = U(Ss) and 1 < |S1] < [Ss| < d. Since S; # 53, there is a
column C € Sy \ S;. Then, C is contained by U(S), which implies that M is not |S;|-

disjunct. Because |S;| < d, this also implies that M is not d disjunct, a contradiction. [

Based on the definition 2.1.4 and lemma 2.2.5, the relationship among d-separable,

d-separable, and d-disjunct can be represented as below.

d — disjunct = d — separable = d — separable



Chapter 3

Deterministic designs from
symmetric BIBD

3.1 Construction method

Before we discuss the deterministic designs, we first give some basic definitions.

Definition 3.1.1. A design is a pair(X, A) such that the following properties are satis-
fied:

1. X is a set of elements called points.

2. Ais a collection of nonempty subsets of X ealled blocks.

Definition 3.1.2. Let v, k, and X\ be positive integers such that v > k > 2. A (v,

k,\)-balanced incomplete block design ((v, k,A)-BIBD) is a design (X,A) such that the

following properties are satisfied:
1. |X|=wvand |A| =b.
2. Each block contains exactly k points.
3. Each pair of distinct points is contained in exactly A blocks.
A BIBD is called a symmetric BIBD if b = v.

Property 3.1.3. For a symmetric (v,k,\)-BIBD, each pair of distinct block has X points

m common.



Proof. See the proof of Theorem 2.2 in [3]. O

The representation of a design through a 0-1 matrix is given in the following defini-

tion.

Definition 3.1.4. Let (X, A) be a design where X = {z1,---,x,} and A = {Ay,---, Ap}.

The incidence matrix of (X, A) is the v x b 0-1 matrix M defined by the rule

“o 0 Zfl'Z¢A]

where m; ; denotes the element in the ¢th row and the jth column of M.

Now, we are ready to show the deterministic designs from symmetric BIBD. The
construction method is first to find a (v, k, \) symmetric BIBD and its corresponding
incidence matrix M. Then, remove one of row in M and we get a (v —1) x v ([§] —1)-

separable matrix. The rationality of this construction is based on the theorem 3.1.8.
Lemma 3.1.5. A symmetric (v, k, \)-BIBD is ([ﬂ — 1)-disjunct.

Proof. According to the property of symmetric BIBD, any two columns intersect in
exactly A points and every column contains exactly £ 1s. Suppose the statement is not
true. Then, there exists a set S of {ﬂ — 1 columns and another column C; with weight
k such that C; C U(S). By Pigeonhold principle, there exists a column Cj in S such
that the interesection of C; and C} has A+ 1 1s, which is contradiction to the definition

of \. .

Lemma 3.1.6. Removing any row from a d-disjunct matriz M yields a d-separable

matriz.

Proof. Without loss of generality, we assume that the first row is removed, yielding
a submatrix M’. Suppose that M’ is not d-separable matrix, which means that there
are two distinct columns sets S; and Sy such that |S;| = [Ss| = d and U(Sy) = U(.S,).
Now, consider U(S;) and U(Sy) in M. Since M is d-disjunct, U(S;) # U(S2) in M.

8



In other words, they are difference in the first row in M. Without loss of generality,
we assume that the first row of U(S;) is 1 and that of U(S3) is 0 in M. Then, we can
find that U(S) contains U(S;). Because d > 1, the above statement implies that U(S})
contains U(S2) and there is a column in Sy \ Sy (they are distinct and have the same

size) contained in U(S;), a contradiction to that M is d-disjunct. O

Theorem 3.1.7. Let M be a d-separable matrix and 1 < k < d — 1. Then M 1is

(k + 1)-separable if and only if M is k-disjunct.

Proof.
(=) Suppose that M is not k-disjunct. Then, there exist a column C' and a set
Sy of k other columns such that C' is contained in U(Sy). Let Sy = S;(J{C}. Then,

|So| =k + 1 and U(Sy) = U(S2). Hence, M is not (k + 1)-separable.

(<) Suppose that M is not (k + 1)-separable. Then, there exist two distinct set
Sy and Sy such that U(S;) = U(S:) and 1 < [Si] < |93 < k+ 1. Because M be a
d-separable matrix, the latter conditioft’can/betelaked to 1 < |S;| < |Sz| < k+ 1. This
implies that there exists a C' € S, \=5; and €' is ‘contained in U(Sy) = U(S7), which

means that M is not k-disjunct as |S;['<.k. O

Theorem 3.1.8. The matriz M’ obtained by removing a row of the incidence matriz of

a symmetric (v, k, \)-BIBD is (’—?‘ — 1) -separable.

Proof. By lemma 3.1.6, M’ is ((ﬂ — 1)-separable. If M’ is W—disjunct, then
we are done by theorem 3.1.7. Suppose the statement is not true. Then, there exists a
set S of ((ﬂ — 2) columns in M and a column C; of M’ contained in S. Do notice that
C; contains k or k — 1 1s and any two columns of M’ intersect in A or A — 1 positions
(that is, the intersection of any two columns of M’ has A or A — 1 1s).

Case A: k = a) for some positive integer a,

If k£ = a\ for some positive integer a, we have (ﬂ A = k. Then, ([g-‘ — 2) A=k=2\

Because A > 1, by Pigenhold principle, there exists one of columns in S intersecting with

9



C; in A + 1 positions, which is a contradiction.

Case B: k # a\ for some positive integer a

If k # a\ for some positive integer a, we have (’—f-‘ — 2) A=k+1—-2\ Do notice
that A > 2 because A = 1 is considered in case A. Hence, ([ﬂ — 2) A=k+1-2)\ < k-3.

Again, by Pigenhold principle, we have a contradiction. O

3.2 Examples of the construction method

From theorem 3.1.8, we should find a (v, k, \) symmetric BIBD and we get a (v —1) xv

W—separable matrix. Unfortunately, given arbitrary v, k, and A, there is not
necessary that a symmetric BIBD exits. However, some families of symmetric BIBD
have been proposed and it is proved that there exists a symmetric BIBD under some
conditions. In this thesis, we consider a well-known family of symmetric BIBD: finite

projective plane.

Definition 3.2.1. A (n® +n+ 1,n + 1;1)-BIBD with n > 2 is called a finite projective

plane of order n.

It can be proved that a projective plane of-etder n exists if n is a prime power [3].

First, we give a 6 x 7 2-separable matrix through a finite projective plane of order 2.

Example 3.2.2. A finite projective plane of order 2.
A finite projective plane of order 2 is a (7,3, 1)-BIBD. The point set is X = {1,2,3,4,5,6,7}
and the block set is A = {{1, 2,3}, {1,4,5}, {1,6,7}, {2,4,6}, {2,5,7}, {3,4,7}, {3,5,6}}.

The incidence matrix is

1110000
1001100
1000011
M=]1010101P0
0100101
0011001
00101160

10



Removing the last row of M, we have

1110000
1001100
, 1000011
M=10101010
0100101
0011001

Based on the theorem 3.1.8, M’ is 2-separable.
The following example give a 12 x 13 3-separable matrix.

Example 3.2.3. A finite projective plane of order 3.

A finite projective plane of order 3 is a (13,4,1)-BIBD. The point set is X =
{1,2,3,4,5,6,7,8,9,10,11,12, 13} and the block set is
A={{1,2,4,10}, {2,3,5,11}, {3,4,6,12}, {4,5,7,13}, {5,6,8,1},{6,7,9,2}, {7, 8,10, 3},
{8,9,11,4}, {9,10,12,5}, {10,11,13,6}, {11,12,1,7}, {12,13,2,8}, {13,1,3,9}}. The

incidence matrix is

<

Il
O OO PR OO OO OO RO
OO R OO oo O FFO
O R OO O OO O OO
_ 0O OO0 0O OO, O EFEOOO
OO O OO O OO
OO OO O OO -~ ©
OO O RO KR FOOO OO
SO R O FEFOOOHFHOOO
O O FEFOOO RO o
_ O P OOOFE OO OO o
O P OO OoOroOoOoOoo o
_ O OOk, OO0 0o Oo
_ O OO OO OO0 o -k O

11



Removing the last row of M, we have

<

Il
cCOoOROR R OO0 ROO
O OO0 OR,ROOO
—F O R P O0OO0OO0OHOOOO
O P OO0 OO0COOO
mr OO0 O0OROOoO OO~
—F 00O O0OHOO0O0OOR~O

SO R OO OO O
O OO0 RO HEKFEO
_ O O OO OO FEFEOO
DO OO OO HOOO
O OO OO FHEHFOOOF
O OO R O EFEFOOO+FO
SO O R OO oo O

Based on the theorem 3.1.8, M’ is 3-separable.

To sum up, theorem 3.1.8 and the existence of finite projective plane of order n imply
that we can find a (n? +n) x (n? +n+ 1) m-separable matrix if n is prime power. Hence,
the minimium number of ¢ for the existence of a ¢ x (¢ + 1) d-separable matrix is smaller

than d? + d + 1 when d is a prime powex:

12



Chapter 4

Main result

In previous chapter, we show that the minimum number of ¢ for the existence of a
t x (t+1) d-separable matrix is smaller than or equal to d? 4 d when d is a prime power
and it has been shown in [2] that the minimum number is d* 4+ d when d = 2. However,
the proof in [2] is quite long and is done case by case. In this section, we reprove it
by the properties of 2-separable matrix, which yields a more shorter and simple proof.

Moreover, we show that d = 3 is also hold.

4.1 d=2

We start the proof with a property of 1-disjunet matrix. The following lemma is known

as Sperner’s theorem [4].
Lemma 4.1.1. Given t, if there exists a t X n 1-disjunct matriz M, then n < (LEJ)'
2

Proof. Let T be the set of row indices and A be a family of subsets of 1" such that no
set in A is a subset of another set in A. Hence, A forms the 1-disjunct matrix. Denote
the number of sets of size k in A by a;. We want to show that

I W (1)

k=0 2

by double counting the number of permutations of 7. Clearly, there are t! ways to
permute 7. On the other hand, given an element of A, say A;, we can permute the

elements in A; and then A\ A;. There are k!(t — k)! way to do so if the size of A; is

13



k. Do notice that we keep the permutation order of A; and then A\ A;. By doing so,
each such permutation will be correspond to an element in A. If an permutation could
be correspond to at least two elements in A, then one will be a subset of the other,
contradicting to the definition of A. Therefore, the number of permutations through
this procedure is
t

S =1Ailn— AN =) ark!(t — k)

AreA k=0
This number is upper bounded by the number of all permutations, t! and we have the

following inequality:
t
> apkl(t — k) <,
k=0

t
or equivalently Z Ak <1

= ()

) is maximum when k = [¢/2], we have

2a ey = <t

k=0 \|t/2]

t
Because ( B

T
t
or equivalently: Z ap < )
k=0

Hence, if a t X n matrix is 1-disjunct, then n < (Lt;2j)' O

In the case d = 2, t is smaller than 6. Do notice that any 2-separable matrix is also a
1-disjunct matrix. By lemma 4.1.1, there is no ¢ x (¢t + 1) 1-disjunct matrix for ¢t = 1,2, 3
because ( ! ) =t<t+1lfort=1,23.

L5
For t = 4 and 5, it is found that the following concept and associated property are

useful.

Definition 4.1.2. (an isolated column)
A column is called isolated if there exists a row incident to it but not to any other

column.

14



Example 4.1.3. Suppose

(4.1)

Q

I
_ O =
_ = O
_ O O

Then, ¢ and C are isolated.

Do notice that if a ¢ x n d-separable (d-disjunct) matrix having an isolated column
C} and d > 1, then removing € and the row incident to C} yields a (t — 1) x (n — 1)
d-separable (d-disjunct) matrix. Hence, we can assume that a ¢t x n d-separable (d-
disjunct) matrix does not have an isolated column if all (¢ — 1) x (n — 1) matrix are not

d-separable (d-disjunct).
Lemma 4.1.4. A nonisolated column in a d-disjunct matriz has weight at least d + 1.

Proof. Suppose there exists a column C with weight at most d. Do notice that for
any position of 1 in C}, there exists a column having 1 at the same position. Since C}
is weight at most d, there exists at most such d columns and the union of these columns

contains (', a contradiction. [

Due to the fact that there is no 3“x.4 2-separable matrix, and if there is a 4 x 5
2-separable matrix M, we can assume that M does not have an isolated column and the
weight of each column in M is at least 2. If the weight of each column in M is at most
1, then it shows that there is no 4 x 5 2-separable matrix M and this sufficient condition

is provided by the following lemma.

Lemma 4.1.5. For a t x n 2-separable matriz M, each column has weight at most

t —k — 1 where k = max ([logy,(n — 1)],0).

Proof. 1t is sufficient to suppose there is a column C' with weight ¢ — k. Then, without
loss of generality, we assume that the position of 0 in C'is in the last k position. For these
k position, we have 2¥ way to put 0 and 1. Because n > 2¥, by Pigeonhole principle,

there exist two columns C' and C? such that the last k elements of them are the same.

15



In this case, we have U({C"',C}) = U({C? C}). This contradicts to the definition of

2-separable. O
To investigate the case: t = 5, we also need the following lemma.

Lemma 4.1.6. For a t x n 2-separable matriz M, if the weight of each column in M is

either 2 or 3, then n < t(t +1)/6.

Proof. The proof of this lemma is the same as that of Theorem 3.7.4 in [1] and, for
self-contained of this thesis, we prove this again.

Do notice that n is equal to the number of columns with weight 2 and 3. Suppose the
number of columns with weight 2 is p. Then, these p columns generate 2p row indices
(these indices could not be distinct). Due to the definition of 2-separable, if two pairs of
indices {z,y} and {x, z} are columns of M, there does not exist a column C” such that
the y-th and z-th row of C" are 1. To find the number of columns with weight 3, the
column with weight 3 should satisfy the abowe,condition.

First, we find the number of pairs.that-share andndex. If 2p — ¢ < 0, there exists at
least 0 such pairs. This lower bound is tight since it is possible that these 2p row indices
are all distinct. If 2p —¢ > 0, we can put:l.in ¢ rows and any other indices yields a pair
that share an index with one column. Hence, there are at least 2p —t such pairs. If there
is a row having zero in all columns, there are at least 2p —t 4 1 such pairs with the same
reason. To sum up, the number of pairs that share an index is at least max(2p — t,0).

Hence, the number of pairs that destroy the definition of 2-separable with the p
columns having weight 2 is at least p + max(2p — ¢,0). Therefore, the number of pairs

that can be contained in a column with weight 3 is at most

t t
(2) —p—max(2p —t,0) < (2) —3p+t

It is clear that a column C” with weight 3 can contain at least 3 such pairs. Hence, the
number of columns with weight 3 is at most (1) —3p+t)/3 and n < p+((}) —3p+t)/3 =
t(t—1)/6+t/3=1t(t+1)/6. O

16



According to lemma 4.1.4 we can show that if there exists a 5 x 6 2-separable matrix
M, the weight of any column in M is 2. In addition, from lemma 4.1.5, the weight of
M is at most 2. Therefore, the weight of any column in M is 2. From lemma 4.1.6,
the maximum value of n is 5(5 +1)/6 =5 < 6 = ¢t + 1. Hence, M is not a 2-separable
matrix.

From the above discussions, we show that there exists no t x (¢t + 1) 2-separable

matrix for ¢ < 5 and the proof is finished.

4.2 d=3

The following theorem shows that there exists no ¢ x (¢ + 1) 2-disjunct matrix if ¢t < 8.

Therefore, there exists no ¢ x (t + 1) 3-separable matrix if ¢ < 8 by lemma lemma 2.2.4.
Theorem 4.2.1. t(2,n) =n ifn <9
Proof. See [5]. O

Lemma 4.2.2. For atxn 2-disjunct=matriz My each-column has weight at mostt—k—1

Usifn> (k) +1

Proof. We prove this by contrapositive. It is sufficient to suppose there is a column
C: with weight ¢t — k. Without loss of generality, we assume that the position of 0 in
(' is in the last k position. Then, remove the C and the first ¢ — k rows in M, we
have a k x (n — 1) matrix M’. Since M is 2-disjunct matrix, M’ must be 1-disjunct
matrix. Otherwise, there exists a column C5 contained in another column C3 in M’ and
Cy is contained in U({C5,C1}) in M, a contradiction. From lemma 4.1.1, it requires

n—1< (LEJ) and we are done. O
2

Lemma 4.2.3. For a d-separable matriz M, removing a column C in M and all rows

intersecting it yields a (d — 1)-separable matriz M'.
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Proof. Suppose M’ is not a (d — 1)-separable matrix M’. Then there exists two set
of columns Sy, Sy such that U(S;) = U(S2) and 1 < [Sy|, |S2] < d — 1. However,
US1U{C1}) = U(S. U{C1}) and 1 < |S; U{C1}, |S2UU{C1}] < d, a contradiction. O

Lemma 4.2.4. There is no 9 x 10 3-separable matriz.

Proof. Based on lemma 4.2.2, a s x (s + 1) 3-separable matrix M has weight at most
s—k—1if s > (LgJ)’ For s = 9, the maximum k such that the inequality holds is 4.
Hence, for a 9x 10 3-separable matrix, each column has weight at most four (9—4—1 = 4)
by lemma 2.2.4.

Moreover, because any 8 x 9 matrix is not 3-separable matrix, any 9 x 10 3-separable
matrix is not isolated. Therefore, from lemma 2.2.4 and 4.1.4, each column has weight
at least 3.

If there is a column with weight 4, then removing this column and all rows intersecting
it yields a 5 x 9 2-separable matrix M’ from lemma 4.2.3. However, it has been shown
that there is no 5 x 6 2-separable matrix, which shows that there is no column having
weight 4 and any column in M has weight 3.

Up to now, we show that each colummn in "M has weight 3. Suppose there are two
columns C and Cs having weight 3 and and they are disjoint. Then, by lemma 4.2.3, C}
and C5 and all rows intersecting them yields a 3 x 8 I-separable matrix M’. However,
it is impossible because (3) + (3) + (g) =343+ 1 =7 <8 (the number of column).

Now, let M’ be the 6 x 9 matrix obtained by removing the first column and all rows
intersecting the first column. Then, each column of M’ has weight at most 2. If a column
of M’ has weight 3, we have disjoint two columns columns and it has been shown that
it is impossible. By lemma 4.2.3, M is 2-separable.

Suppose M’ has a column Cj, having weight 1 in the ith row, for some integer i. If
this column does not intersect with other columns, removing this column and kth row
from yields a 5 x 8 2-separable matrix, which is impossible since there is no 5 x 6 2-

separable matrix. If there exists a column C), intersecting with C, then C}, is contained
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in U({Cy,C}}), which shows that M is not 2-disjunct and not a 3-separable. Hence,
each column in M’ has weight 2.

Since M’ is 2-separable, the columns which we chosen have (?) + (g) = 45 conditions.
On the other hand, there are 9 boolean sums consisting one column having weight 2 (M’
is 6 x 9). Because the boolean sum of two columns has weight at most 4 and at least 3
(M’ is 2-separable with constant weight 2), there are (3) + () =20 + 15 = 35 boolean
sums involving two columns. Therefore, we have 9 4+ 35 = 44 results. Since the number

of results is smaller than the number of conditions, M’ must be not a 2-separable matrix.

From the discussion above, we are done. O
Lemma 4.2.5. There is no 10 x 11 3-separable matriz.

Proof. Based on lemma 4.2.2, a 10 x 11 3-separable matrix M has weight at most

10—k—1if 10 > (
2

at most 5. Moreover, from Lemma 4.1.4, each column has weight at least 3.

J)' Hence, for a 10 x 11 3-separable matrix, each column has weight

If there is a column having weight 5, then removing this column and all rows inter-
secting it yields a 5 x 10 2-separable matrix M/ from lemma 4.2.3. However, it has been
shown that there is no 5 x 6 2-separable matrix, which shows that there is no column
having weight 5.

Suppose there are two columns C and Cy having weight 4 and they are disjoint.
Then, by lemma 4.2.3, removing C and C5 and all rows intersecting them yields a 2 x 9
1-separable matrix M. However, it is impossible because (f) + (;) =142=3<9 (the
number of column).

Similarly, suppose there are two columns C and C5 having weight 4 and they inter-
sect in only one position (or w(Cy) = 4, w(Cs) = 3, and they are disjoint). Then, by
lemma 4.2.3, removing C; and Cy and all rows intersecting them yields a 3 x 9 1-separable
matrix M’. However, it is impossible because (i’) + (g) + (3) =343+1=7<9 (the

number of column).

Hence, if there is a column having weight 4, then removing this column and all
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rows intersecting it yields a 6 x 10 2-separable matrix M’ from lemma 4.2.3 and M’
has weight at most 2. Recall that M’ is not isolated and 2-separable matrix, implying
1-disjunct matrix. Hence, M’ has weight at least 2. In fact, there is no such 2-separable
matrix because there are (110 ) + (120) = 55 conditions and we have only (g) + (Z) +10 =
20 + 15 4+ 10 = 45 possible ways to be a boolean sum of two or one column. Up to
now, we have prove that each column of M has weight 3. Without loss of generality,
we assume that the first column C) has 1 in the first 3 rows. Then, removing the first
column and the first 3 rows yields a 7 x 10 2-separable matrix M’. Notice that each
column of M’ has weight at most 3 and at least 1. If there is a column Cy with weight
1 in the fourth row, then there does not exist a column C5 having 1 in the fourth row
because M’ is 1-disjunct. This implies that C is a isolated column in M (Cy has zero
in the fourth row) and this is a contradiction. Hence, each column of M’ has weight 2
or 3. By lemma 4.1.6, we have n = 7(7 + 1)/6 = 28/3 < 10 and M’ does not exist.
Therefore, there exists no 10 x 11 3-separable:matrix with constant weight 3.

From the above discussions, this lemma’ is proved. O
Lemma 4.2.6. There is no 11 x 12 3=separable-matriz M.

Proof. Based on lemma 4.2.2 and 2.2.4, a t X (t + 1) 3-separable matrix M has weight
at most t —k—1if ¢t > (LgJ)‘ For ¢t = 11, the maximum k such that the inequality holds
is 5. Hence, for a 11 x 12 3-separable matrix, the weight of each column is at most five
(11-5-1=5).

In addition, any 10 x 11 matrix is not 3-separable matrix; therefore, any 11 x 12 3-
separable matrix is not isolated. From lemma 2.2.4 and 4.1.4, the weight of each column
is at least three.

Suppose there are two columns C and Cy with weight 5. If they are disjoint, then
removing C, Oy, and all rows intersecting them yields a 1 x 10 I-separable matrix,
which is impossible. Now, suppose they intersect in t positions only and following the

same procedure, we have a (1 +t) x 10 I-separable matrix. In this case, we require
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leirll(1+t’5) ((1?)) > 10 (by lemma 4.1.1), which is hold when ¢ > 3.

Now, removing C; and all row intersecting it yields a 2-separable matrix M’. Since
the original matrix is not isolated, M’ is not isolated and, by lemma 2.2.4 and 4.1.4,
each column has weight at least two. This implies that C5 can intersect C; at most 3
positions (¢t < 3). Hence, we could assume that each column of M’ has weight 2. Since
M’ is 6 x 11 2-separable, we require 11 < 6(6+1)/6 by lemma 4.1.6, which is impossible.
Hence, there are no two or more columns with weight 5.

Suppose Cy has weight 4. Then, it is equivalent to the case that Cy has weight 5
and C and Cj intersect at least in a position. Following the same discussion, it can be
proved that there is no such Cy. Similarly, we can also prove that there is no column
with weight 3. In conclusion, there is no column with weight 5 in M.

Now, suppose there is a column C with weight 4. If there is another column C5 with
weight 4 and Cs is disjoint with ', removing them and all the rows intersecting them
gives a 3 x 10 I-separable matrix M. Since (‘;)) + (;’) + (g) =7 < 10, there is no such
M. Let M; be the matrix by removing Ci and all rows intersect it. Then, each column
of M, is at least 2 because M; is 2-séparable‘matrix-and M; is not isolated. Moreover,
since there are no columns with weight4:and disjoint in M, each column of M, is at
most 3. In this case, from lemma 4.1.6, we require 11 < 7(7+ 1)/6, which is impossible.
Hence, there is no column with weight 4 in M.

Up to now, we show that if M is a 11 x 12 3-separable matrix, it must be a matrix
with constant weight 3. Notice that any pair of two columns C, Cs must share at most
one row. If they intersect in two rows, then removing C'; and all rows intersect C yields
a 2-separable matrix M; having a column with weight 1. However, we know that any
column in M; has at least weight 2, a contradiction.

Because any two columns share at most one row and M is constant weight 3, there
are at most five 1s in a row. To show that M is impossible to be 3-separable matrix,

we first consider a row with five 1s. Without loss of generality, we have the following
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structure.

11111
1
1
1
1
1
1
1
1
1
1

Up to permutation, there is only one way for the sixth column and we have the following

structure.
1 1 1 11
1 1
1
1 1
1
1 1
1
1
1
1
1

Case 1. C7 has 1 in the second row.

There are three subcases in this case.

Subcase 1.
11111
1 11
1
1 1
1 1
1 1
1 1
1
1
1
1
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It can be check that U(Cy, Cy, Cs) = U(CY, Cg, Cr).

Subcase 2.
1 1111
1 11
1
1 1
1 1
1 1
1
1 1
1
1
1

It can be check that U(Cy, C3,C7) = U(Cs, Cg, Cr).

Subcase 3.
1 1111
1 11
1
1 1
1
1 1
1
1 1
1
1 1
1

It is 3-separable. Hence, we consider the all possibilities of Cg. Do notice that it is
impossible that Cg has 1 in the second row. If C's has 1 in the second row, it has the
structure discussed in subcase 1 or subcase 2. Therefore, we start our discussion with 1

in the third row.
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Case a.

It can be check that U(C4, Cs, Cg) = U(C, Cs, Cy).
Case b.
1 111

It can be check that U(CY, Cy, C7) = U(Cy, Cr7, Cy).
Case c.

1111

It can be check that U(C4, Cs, Cg) = U(Cs, Cg, Cy).
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Case d.

1 1111
1 11
1 1
1 1
1 1
1 1
1 1
1 1
1
1 1
1
It can be check that U(CY, Cy, C3) = U(C, Cg, Cy).
Case e.
1 1111
1 11
1 1
1 1
1 1
1 1
1
1 1
1 1
1 1
.

It can be check that U(C4, Cg, Cg) = U(Cy, Cg, Cy).

From the discussion of case a-e, it is shown that there is no 1 in the third row. It is
impossible as the is no isolated column in M. Hence, we finish the case 1.

Case 2. C7 has 1 in the third row.

In this case, there are five subcases.
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Subcase 1.

It can be check that U(C4, Cs, C7) = U(Cy, Cs, Cr).
Subcase 2.

1111

It can be check that U(C4, Cs, C7) = U(Cs, Cg, Cr).
Subcase 3.
1 111

It can be check that U(CY, Cy, C3) = U(C, Cs, Cy).
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Subcase 4.

It can be check that U(C4, Cg, C7) = U(Cy, Cg, Cr).
Subcase 4.
1 111

It can be check that it is 3-separable.
Now, consider the structure of Cy.

Case a.
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It can be check that U(Cy, Cs,Cs) = U(C4, Cg, Cs).
Case b.

It can be check that U(Cy, Cs,Cs) = U(C4, Cg, Cs).

Case c.

It can be check that U(Cy, Cs, Cs) = U(Cs5, Cg, Cs).
Case d.




It can be check that U(Cy, Cs, Cg) = U(Cs5, Cg, Cs) and we finish the case 2.

From the above discussions, we conclude that there is no row with five 1s. In addition,
there is no case involving Cj in the above discussions. This implies that there is no row
with four 1s. Hence, any row has at most three 1s. Yet, it is impossible for M because
M is a constant weight 3 matrix. We have to put 3 x 12 = 36 1s in M but there are at
most 3 x 11 = 33 positions for us to choose.

From the discussion above, we are done. O
From lemma 4.2.4-4.2.6, we have the following main theorem.

Theorem 4.2.7. The minimum number of t for the existence of a t x (t+1) d-separable

matriz is d*> + d when d = 3.
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