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Abstract

Strictly totally positive matrices play an important role in various mathe-
matical branches, but there are not very familiar even to linear algebraists.
It is the purpose of this thesis to introduce the known properties of these ma-
trices and their self-contained proofs. Some observations and open problems

are given in the end.
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1 Introduction

A positive matrix is a matrix with all its entries positive. The important
applications of positive matrices are spread in many areas. For instance, pos-
itive matrices play a crucial role in theoretical economics. A strictly totally
positive matrix is a matrix with all its minors positive. The traces of strictly
totally positive matrices can be found in many mathematical branches such as
probability theory, approximation theory, facilitating numerical procedures
in solving certain types of differential equations, in the analysis of certain
integral and differential operators and so on. However, strictly totally pos-
itive matrices are not very familiar even to linear algebraists though these

matrices have important role in various mathematical branches.

In this paper, we organize the basic properties of strictly totally positive
matrices. The proofs are all selfcontained. Most of the results can be found
in [6], [7]. At first, we shall introduce Tensor product spaces, skew-symmetric
spaces, linear transformations over above two spaces, sign variations of vec-
tors which all play important roles with the strictly totally positive matrices.
Also, we will present relations between skew-symmetric spaces and sign vari-
ation of vectors, between sign variation of vectors and strictly sign regular
matrices, and between strictly sign regular matrices and strictly totally pos-
1tive matrices.

Now we introduce some notations, we view R" as the set of column vec-
tors. Let V' be a real vector space with a subspace H. We denote ( , ) the
standard inner product function of V, and H+ an orthogonal complement

of H with respect to the inner product function {, ). We denote M, (R)



the set of all n x m matrices with real entries. In particular, we also de-
note M,(R) the set of all n x n matrices with real entries. The transpose
of a matrix A is denoted by A'. If A = [a;;] € Mpxn(R), then we define
detA = Z s'gn(cr)ala(l]agam “+*Qng(n), Where S, is the permutation group
on the sgtes{nl, <, n}

Let A € Mp«m(R). For the index set & C {1,---,n} and 8 C {1,--- ,m},
we denote the submatrix of A lies in the rows indexed by « and the columns
indexed by £ as A[a|f]. Often it is convenient to indicate a submatrix of A
via deletion of rows or columns. For example, we denote A(a/ 3) is the result
of deleting the rows of A indexed by a and the columns indexed by 5. In this
paper, if A € M, (R), then we view A[—|5] as A[{1,---,n}|B]. Similarly
Ala|-] as Ala| {1, - ,m}].

2 Tensor Products

Definition 2.1. Let e, ey, -+, e, be the standard basis of R". The tensor
product of R” and R™ is the vector space of dimension n x m defined by
n,m
R" ® R™ = {Zcije,;@ej[ Cij ER}, (1)
: ij=1

where { e;®ej| i=1,---,n,7 =1, ---m} is an orthonormal basis.

We do not always write elements in R* ® R™ as in (1). In fact, we use

the following notation:

Zciei®zafjej = ,Zci-djeit@ej. (*)
i=1 j=1

i,j=1
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Remark 2.2.

1. Since {e; ®ej| 1 =1,---,n,j =1,---m} is an orthonormal basis,
(e; ® e, ex ® er) = didji = {es, ex) (€, €r)-

2. Using the convention in (x), (z; ® T2, y1 ® y2) = (z1, Y1) (T2, y2) for all
T, Y € Rn? Ty, Yz € R™,

Similarly, we can define k-tensor product

k
QR = (R"®R")®R")---®R".

i
k copies

k

The basis of ®R” is {e;, ® e, ® - Qey| t1,-- i € {1,---,n}}. In
k

particular, ® R"™ has dimension n*. Let L : R® — R™ , M : R®* — R’ be

linear transformations. Define L ® M : R" ® R®* — R™ ® R’ linearly by
LeMz®y)=Lzx® My (2)
forz € R*, y € R°.

Let A, B, C, D be the standard bases of R", R™, R®, R? respectively. Let
A = [L]# be the matrix representation of L w.r.t. A, B and B = [M]$ is the

matrix representation of M w.r.t C, D. Then the matrix representation of
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L ® M w.r.t. the standard bases of R” ® R*, R™ ® R! in the lexicographical

order is denoted by

a,UB amB
A® B = :

amB  ampB

where A = [ai;]mxn:

Throughout this paper we identify a linear transformation and its matrix
representation. The following remark is concerning about the basic properties

of matrices. We leave the proofs of the first two statements to the reader.
Remark 2.3.

1. Assume A, B are square matrices of the same size. Then P(A® B)P! =

B ® A for some permutation matrix P.

2. Assume A, B are square matrices of the same size. Then (A ® B)! =

At @ Bt.
3. Let A € Mpun(R), B € Mys(R), C € Mpxu(R), D € Myyu(R). Then

(A® B)(C ® D) = AC ® BD.

4. Suppose A, B are invertible square matrices. Then A ® B is invertible

and (A® B)™' = A"'®@ B~%.

. If A is similar to A’ and B is similar to B’, then A ® B is similar to

A'®B.

b |



6. If A € M,«n(R) with eigenvalues A\j,---, Ay, B € Mpum(R) with

eigenvalues py,- -, ln, then

(a) A® B has eigenvalues A\juj, 1 =1,---,n,3=1,---,m;

(b) If u is an eigenvector of A for A;, v is an eigenvector of B for pj,

then u ® v is an eigenvector of A ® B for A;ju;.

Proof of 3. By (2),

(A® B(C® D)e;®e; = (A® B)(Ce; ® Dej) = ACe; ® BDe;
= (AC ® BD)(e; ® e;)

Iopall =43 w.1% 1<%

Q.E.D.
Proof of 4. By Remark 2.3.3,
(A BY(AT'®@B™!) = AA' ® BB™!
— e
Q.E.D.
Proof of 5. Suppose A = PA'P~!, B=QB'Q". Then
(A B) = PA'P'®QBQ!
= (PRQA®B)(P®Q)™"
by remark 2.3.3. Q.E.D.
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Proof. of 6(b)

(A® B)(u®v) = Au® Bv
= \u® p,v
= Aipi;(u® ).

Q.E.D.

3 Skew-symmetric power

In this section, we will introduce an important subspace of the tensor

product space which is called the skew-symmetric space.
Definition 3.1. Let S; be the permutation group on the set {1,--- ,k}. For
m € Sk, define 7 : éR“ — éRn linearly by

T1® Q% —T(T1 Q- @ Tk) =Tr(1) @+ ® T(iy)-

Then the k-th skew-symmetric space over R" is denoted by

k k
/\]R” = {3: € ®R“|7r(:1:) =sgn(m)z for all m € Sk} .

Example 3.2. Show that
' 2
€1 Qe —eRe; E/\Rﬂ'.
Sol. Let # = (1,2), then

T(e1®er—e2®e1) = e2Qe—e; Qe
= —(e1Qer—e3®ep)

= sgn(m)(e;®@e; —ex R eq). (3)
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If 7 = e, the identity permutation, then equation (3) hold clearly.

Q.E.D.
Definition 3.3. Forz; e R*, i =1, - ,k,
T A - ngn (21 Q@ @ x) € ®R“
is called the skew-symmetric product of zy,--- , zy.
It is easy to check the following remark.
Remark 3.4.
k
Forz; eR®, 1<i<k,z1 A~ A2z € /\R".
Theorem 3.5. kl(zy A Azg,y1 A -+ A yr) =det[(Zi, Y5) ] i
Proof.
E gy Ao Az, yr Ao A Yk)

Pl Z B sgn (7)sgn(0) (T (1), Yo (1)) ** * {Tr(k)> Yo ()

k! TFESk gES)

1 Z Z SSH(U'FT y(ar?r—l}w(l)> <:rwr(k)=y(arr-1)1r(k)>

k! TESE 0ES,

1

= Z det [{zi, Y5 xi
' TESE
= det [(z;, yj)]kxk :
Q.E.D.
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Corollary 3.6. z; A--- Axy =0 <= 11, -,z are linear dependent.

Proof. Let A = [zy,z3,---,z¢]. Observe rankA’A = rankA forall A €
M, «(R). Hence

T4 /\---/\"L‘k = D — det [{xhz.?)]k)(k =0-
& det(A’A4) = 0.

<= rankA < k.

& 1Iy,---,x; are linear dependent.
Q.E.D.
k
Now we are ready to give a basis of /\R“.
Remark 3.7.
L Leta={a1 << - <} {2, ,n}
€a = €gy NEoy A+ Aey,.
k
Then the set { eq | la| =k, & € {1,2,---,n}} spans /\ R".
2. fe, BC{1,2,--- ,n}, |a| = | B] =k, then (eq,e5) = & Oap.
3. The set { Vk! e, | la| =k,a C {1,2,- }} is an orthonormal basis

of /\R"" In particular, /\R" has dimension (J).

Next, we study the linear transformations between skew-symmetric spaces.
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k
Definition 3.8. Let A : R* — R™, the k-th exterior power /\ A of A is
defined linearly by

k k k
AA4: AR* — AR,
where (zy A Axg) = Azg A= A Az,

Lemma 3.9. Suppose A € Myun(R), B € M,«,(R). Then
k k k
AAB=(\A)AB).
Proof.
k
/\AB(z A Azy) = ABziA---AABz
k
= N\ A(BziA---ABxzy)
k k
= NAAB@ A Azyp)
k k
= (NAo AB)(@i A Amy).

Q.E.D.

k
Corollary 3.10. Suppose A € M, (R) is invertible. Then /\A is invertible
k

k
and (/\ 4)7' = A\ AL
Proof. By lemma 3.9
k k k k
Adeat= NAST = \T=1.
| Q.E.D.
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Remark 3.11. Suppose A € M,,x»(R). Then by theorem 3.5,

k
(NAes = (/\AVH e5, VA ea)

k
= kI(/\ Aes, e0)
= k!(Aeg, A+ N\ Aeg,,eq; N+ Neg,)
= det [(Aeg,, €q,)]

kxk

= detA[a|f],

where o = {oy<---<og} C {1, --,m}, |a| =|B]| =k,

B = {Bi<--<B}C{L, ,n}

Next, we will introduce a class of special matrices which are called strictly
totally positive matrices. The traces of these matrices can be found in many
mathematical branches such as probability theory, approximation theory,
facilitating numerical procedures in solving certain types of differential equa-

tions, in the analysis of certain integral and differential operators and so on.

Definition 3.12.
1. A=aij] € Mpxm(R) is called strictly positive ( resp. positive )
if a;; >0 (resp. a;; > 0) forallie {1,---,n},j€{l,---,m}.

In this situation, A is denoted by A > 0 (resp. A > 0).

13



2. A€ M,,n(R) is called strictly totally positive ( resp. totally positive)
if detA[a|B] > 0 ( resp. detA[a|f] > 0 ) for all & C {1,---,n},
gc{1,---,m} |al=|0].

Remark 3.13.

1. STP ( resp. TP ) is stand for strictly totally positive ( resp. totally

positive) .
2. A STP ( resp. TP) matrix is strictly positive ( resp. positive) .

3. If A € Myxm(R) is a STP matrix, then A* is also a STP matrix .
k

4. A € Myym(R) is a STP ( resp. TP) matrix <= /\A > 0 (resp. >
0) forall k=1,--- ,min{m,n}.

Theorem 3.14. (Binet-Cauchy Theorem)
Suppose A, B € M,(R) and for all o, 3 C {1,--- ,n},|a| = |B] = k. Then

detAB[a|f]= ) detA[a|w]detB [w|f].

wC {1, ,n}
[w|=k

Proof. By remark 3.11,

k

detAB[a|B] = (\AB)as = [(/\A)(/\B)

= Z (/\A)o:w(/\ B)wﬁ)
}

wC{l,--,n
|w|=k

- Z detA [or|w] detB [w|f] .

wC{1l, n}
lw|=k

af
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Q.E.D.
Corollary 3.15.
1. If A, B € M,(R), then detAB = detA - detB.

2. If A€ Myym(R), B € Mpxp(R) are TP ( STP) matrices, then AB is a
TP ( STP) matrix.

Proof. of 1. This is immediate from Binet-Cauchy theorem with k =n, a =
H=A 10 v i)
Q.E.D.

2. This is immediate from definition 3.12.2 Binet-Cauchy theorem.

Q.E.D.

Remark 3.16.

/\ - = et e o] 8]

= g i

where o = {a, -, o4}

Theorem 3.17 (Kronecker Theorem).
Suppose A € M,(R) with eigenvalues A;(A4),---,A\,(A) € C, such that

k
A (A)] > -+ > |A(A)]. Then /\4 is a (}) x (}) matrix and the following
1. 2. hold:

15



k
I /\A has eigenvalues H Ao;(A), where & = {ag < --- < o} C

1<i<k
{1! e ;n};

2. If u; is an eigenvector of A for A, (A), then u; A --- A uy is an eigen-
k
vector of /\A for H Aq; (A), where the set a = {ag < -~ <oy} C

1<i<k
{1,---,n}.

0

Proof. 1. Suppose A is diagonalizable. Then A = P~ P

for some P € M,(R). Hence by lemma 3.9,

k k /\1 k k /\1 O k
D= if§ P= 0 B =P I A
U 0 .

k
Hence /\A has eigenvalues H Ao;(A), where a@ = {a; < -+ < oy} C
1<i<k
{1,--- ,n} by remark 3.16.
Since diagonalizable matrices are dense in the space of square matrices,

and the spectrum depends continuously on matrix entries. Hence 1. holds in

general.
Q.E.D.

2. By definition 3.8,

16



/\A(ul/\w-/\uk) = Aulf\---/\Auk
= a1 A Adg, Uk

= Aal-‘-Aak(ulA."/\uk)'

Q.E.D.

Using theorem 3.17, we can have the following remark. The proof is left
to the reader.
Remark 3.18.

k
1. /\ A is also called the k-th compound of A.

k
2. Rank A\ A = (r‘“;kA).

k
3. det \ A = (det4) (=),

4  Schur Complement

Definition 4.1. Let A € M,(R), fixk (1<k <n)and o, C{1,---,n}
such that |o| = |5| = k. Assume A[a|f] is invertible. The Schur complement
of Ala|B] in A is the matrix A \ [@|8] which is defined by

A\ [a]f] = A(alB) — A(alB|AlalB] 7" AlelB). (4)

17



2 2 3
Example 4.2. Let A=| 1 0 1 |. Then

1 0 1
A\[11 = E 1]—[1]2%3}

Observe that detA = 0, detA[l|1]
detA[1]1] - detA \ [1]1].

Il
T 1
| |
e
oL !
— —_
| ER S |

2, detA \ [1/1] = 0, and detA =

Definition 4.3. Let a, o/ C {1,---,n}, aUd = {1,--- ,n},and =0,

a={oy <--<ap} C{l,--,n},ad ={a} <---<a;} C{1,--- 0}
Then define
1 =+ k k4l =+ n
II, = € Sk.
Qp o o) e ol
Remark 4.4.

1. sgn(a) = sgn(Il,) for o C {1,--- ,n}.

2. Alo] = Alala], A(a) = A(ala), A\ a= A\ [o|a] for A € M,(R) and
aC{l,--,n}

18



3. Let T, be the permutation matrix representing II;'. Then

Ale|f] =
Ale|f] =
Alalf) =
Alalf) =

hence

TLAT; YL, K],

TaATﬁ_l ({11 e 1k}|{1= Y ,k}]’

T AT ({1, 5 K} 5
TaATﬁ_l [{1: i ,k}l{l, "' =k}) )

A\ [a|8] = A(al) — AelBlAllB] T Ala| B) = TaAT; ' \ {1, -+ , k},

for A € M,(R) and o, 8 C {1, - ,n} with |a| = | 8| = k.

Theorem 4.5. Suppose A € M,(R), o, C {1, - ,n} such that |a| =

|B| = k. Assume A[a|f] is invertible. Then

detA = sgn(a)sgn(3)det Ala|Sldet A\ [a] B].

Proof. First, assume o = 8 = {1,--- ,k}. Then

I,[a] 0
Alolaldlal o] L(o)

‘ [ A{[]cz]

| { Lia] Ala]'Ale]c) }

0 I(a)

[ Llo] Alo]'Ale|e)

_ I[a)Alq] 0
| Ala]dJAle] M Ale] Li(a)A\a 0 I,(a)

| 4w Alala) } 5
| Alala] A(alo]Alo] M Alale) + 4\ @

A.

19



by (4). Hence
detA =1 x detAfa] x (detA \ @) x 1 = detA[a] - detA \ a.

In general; for all o, 8 C {1, -+ ,n} with |a| = | 5| = k, by above argu-

ment,
det(TuAT;") = det(TuAT; {1, , k}]) - det(TaAT; 2\ {1, -+, k}).
Hence
detA = sgn(a)sgn(8)detT,AT;"
= sgn(a)sgn(B)detTuAT; [{L, -~ , k}] - det(TaAT; \ {1, ,&})
= sgn(a)sgn(B)det Ala|]detA \ [o]].

Q.E.D.

Corollary 4.6. Assume A € M,(R) is invertible and A[a| /] is invertible,
where o, 3 C {1, -+ ,n}, |a] = |B|. Then A\ [«|] is invertible and

(4\ [a]B)~ = A74(8] )
Proof. Observe
AT Bla) = TpATTN({L kD)
= (TAT;) 7 ({1, k})
= (TAT; \ {1, k]
= (A\[elB)™"

The third equality holds by taking inverse on both sides of (5).
QED.
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Corollary 4.7. If A € M,(R) is invertible, o, 8 C {1,--- ,n}, |a| = |B],

then

detA(S|a)

detA™![|B] = sgn(c)sgn(B) detA

Proof. By theorem 4.5 and corollary 4.6,

1

detA™" = sgn(a)sgn(8)detA™ [a|B]det [(A™"\ [a]B]) 7]~
= sgn(a)sgn(B)detA [ar|B]det [A(B]a)] ™" .

Hence

= sgn(a)sgn(ﬁ)detA‘l[aWId n L

etk det [A(B|a)]

Then

detA™'[a|B] = sgn(a)sgn(ﬁ)%.

Q.ED.

Corollary 4.8. Suppose A € M,(R) is invertible and a = {i}, 5 = {j}.
Then

(A = detA‘l[ajg] - (_1)¢+jde§i€ifi)_

5 Variation of signs

In this section, we will introduce a new concept which is the variation
of signs of a vector. There is an important connection between the skew-

symmetric space and the sign variations of vectors.

Definition 5.1. For z = (ay, -+ ,a,)" € R", let S™(z) be the sign changes
in ay,- -, 0, with zero terms discarded, and let S™(z) be the maximum

sign changes in a;, - - - , ay,, where zeros are assigned +1, —1 arbitrarily.
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0 0
Example 5.2. S — — 58

It is immediate from definition of S™ and S~, we have the following:

Remark 5.3.

1.

0<5(z) £ St(x) <n—1forall z € R".

2. Let x, be a sequence in R and z, convergent to x. Then

lim S*(x,) < S*(z) and lim S™(z,) = S™(z).

Definition 5.4. Suppose z; € R*, i =1,---,k. Then

TiNvo N = Z Exta= 0 £5 20 dorall a.

Remark 5.5.
zy A---Azg > 0 (resp. > 0).
& €020 (resp. > 0) for alla C {1,--- ,n},|a| =k.
& (T A Azg,eq) >0 (resp. > 0) for alla C {1,--- ,n},|a| =k.
& clet[(:z:z-,e(,,j)],;m;c >0 (resp. > 0) forall a = {o; < --- < ax} C {1, --,n}.
& detjzy, -, zg)[a|—] >0 (resp. > 0) forall o = {1 < -+ <oy} C {1,--- ,n}.

k
/\[591,“' ,Tk] > 0 (resp. > 0) for all @ ={a; <--- < ax} C{1,---,n},

22



by definition5.4, theorem 3.5 and remark 3.11.

Theorem 5.6. Let n > m be positive integers and A € My, m(R). Then
. ) m m
S*(Az) < m — 1 for all nonzero z € R™ < /\A >0 or /\A <

Proof.(«<=) By the truncation of rows, without loss of generality, let n =

m + 1 and there exists nonzero z € R" with

(A$)1 Z 0, (AIE)Q S U, (A.’I!)g 2 0---. (6)

m m
Suppose A = [a, - ,a,) and /\A > 0 ( similarly for /\ A <0). Then
detA[a|-] >0, foralla C {1, -+ ,n} |a| = m.
In particular, rankA = m.

Suppose @y A -+ A Gm = Y Ei€;, Where e = e; A~ A& A Aen.
Then ; > 0, for all i € {1,---,n}. Hence Az € span{ay, - ,an} and by
corollary 3.6

0 = Az Aai A---Nap

= [(Az),e; + (Az)2e2 + - - - + (AT)nen] A Zgie;.
i=1

= > ()" (Az)ici(er A+ Aen).

=1

Z(—l)i"l(Ax)iei =0. (7)



By (6) and (7), (=1)""!(Az);e; = Oforalli € {1,---,n}. Since & > 0
for all i € {1,---,n}, (Az); = Oforall ¢ = {1,---,n} , this contradicts

rankA = m.

(=) First, we show detA[a|-]detA[3|—] > 0 for all o,8 C {1,---,n},
(| =8l =m, and|aU Bl =m+1.

Without loss of generality, let n = m+1 (ie. aUB = {1,---,n}).
Suppose A = [ay, -+ ,an] and ST(Az) < m—1 for all nonzero z € R". Then
ST(Az) #n—1 for all z € R™.

Suppose a1 A -+ Aay, = isiezf and forsomel=1,--- ,n—1. &, €41

i=1

are not both 0 with ;5,1 < 0. Then

n
(Ei1+1€1 + Er€141) A Z €i€;

=1

= [(-D)" e+ (D lacmllet A Aey)

=
Hence, £.1€; + £,€,01 € span{ay, - ,am}. S0
n—1=8% (g1 + cr€141) <m

by assumption. This contradicts n > m.

In general, for all o, 8 C {1,--- ,n}, |a| = | B| = m. We can find subsets
Wy = @, wy, -, wy = B such that |w;| =m, w; C {1,--+ ,n}, |wiUwipa| =
m+1, i€ {1, ,t—1}.
Q.E.D.
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Definition 5.7.

S
Il
H

- - MXT

Example 5.8.
1 0 0
1 0
Joy = ,JJs=|0 =1 0
0 -1
0 0 1
Remark 5.9. Suppose o, w C {1,--- ,n}, o= {an < <og}, o] =|wl|
Then
dety[o|w] = Oaw(—1)%@
k
= Oaw _Hl("l)ai_l
=
— 60: (_UZLJ a;—i+i—1

= 5aw5gn(a)(“1)ﬂ%__ll,

where e(a) is the number of even numbers in a.

Lemma 5.10. Suppose A € Mpx,(R), a,8 C {1,---,n}, |a| =|B|. Then

detA(SB|a)

detJp A~ nlalf] = =5

25




Proof. By theorem 3.14 and corollary 4.7,

det oA L[alB] = ) detJy[a|w]detA [w]w'|det S, [w'| 8]

w;w’(_:{ 1, ,‘-‘1}

= detJ,[a|a]det A~ [o|f]det 8] 8]

= sgn(c)sgn(8)sem(a)sgn(5) 01,
_ detA(Bla)
detA

Q.ED.

Replacing A by J, AJ, and recalling J? = I, we have the following remark.

Remark 5.11. Suppose A € Myxn(R), @ ,8C {1,---,n}, |a| =|B|. Then

detJ, AJ,(5|)
detA '

detA~'[a]B] =

The following lemma can be easily proved by induction. We leave it to

the reader.

Lemma 5.12.

ST(z) + S (Juz) =n—1 forallz € R,

The following theorem describes the relation of sign variations in vectors

of orthogonal spaces.

Theorem 5.13. Suppose M C R" with 1 < dimM = m < n. Then
S*(z) <m—1 for all nonzero z € M <= S~ (y) > m for all nonzero y € M*.
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Proof. (=) Choose an orthonormal basis a;, - - - , a, of R” such thatay,--- ,a,, €
M and amir, - ,an € M+, A= [ay,--- ,a,]. Note A™' = A* and detA = 1.
Suppose ST(z) < m — 1 for all nonzero x € M. By Theorem 5.6,

m
/\Al-11,---,m] > 0or <0.

Without loss of generality, suppose /\A[—|1, -++,m] > 0. Then by re-

mark 5.11,
0 < detAlall, - ,m)]
= det(A7")[e1,-- ,m]
= detA™'[1, -, m|a]
= detJ,AJ (|1, --- ,m)
= detJ,AJ,[a'/m+1,--- ,n],
foralla C {1,--- ,n},| a] = m, where o' is a complemental set in {1,--- ,n}.

Hence /\ JnAJp[—|lm +1,--- ,n] > 0. By Theorem 5.6,

S*(z) < (n-m) -1 (8)

for all z € span{ J,AJ,e; |t = m+1,---,n}. Let y € M+. Then y =
Bm+10me1 + -+ - + Prnay, for some B; € R, where ¢ € {m + 1,--- ,n}. Note
JuAdpe; = (1)1 Jpa; , i € {m +1,--- ,n}. Hence Joy = Bms1Jnlms1s +
o+ BpJna, € span{ J,AJue; | i=m+1,--- ,n}. Then,

n-m-1>St(J,y)=n—-1-S5"(y)
by (8) and lemma 5.12. Hence S~ (y) > m.
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(<) If S~(y) > m for all nonzero y € M*, then by lemma 5.12,
ST(Jay) < (n—1) —m.

Hence S™(z) > n — m for all nonzero z € (J,M™*)*+ by previous direction.

We have
S*(Jaz) < m—1 9)

for all nonzero x € (J,M=*)*. Equation (9) is equivalent to S*(z) < m — 1

for all nonzero z € M.
Q.E.D.

Definition 5.14.
By a signature, we mean an infinite real sequence ¢ = (g;), such that

Ep—zk=1.

Example 5.15.

e={1,-1,1,1,1,—1,—1,--- } is a signature.

Definition 5.16. A € M, ,,(R) is sign regular ( resp. strictly sign regular)

with signature € if

k
Ek /\ A >0 (resp. > 0) forall k, 1 <k < min{m,n}.

From remark 3.11, A € M,,m(R) is sign regular ( resp. strictly sign regu-
lar) iff sidetA[a|B] > 0 (resp. exdetA[a|f] > 0), foralla C {1,--- ,n}, B C
{1,--- ,m},1 <k < min{m,n},|a|=|8| =k.
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It is immediate from definition 3.12, we have the following:

Remark 5.17.

A is totally positive <= A is sign regular with signature e = {1,1,1,--- }.

we give a characterization of strictly sign regular matrices in terms of the

variation of signs of vectors on their image.

Theorem 5.18. Supposen > m and A = [a1, +* ,am] € Muxm(R). Then A
is strictly sign regular with some signature ¢ if and only if ST(Az) < S~ (z)

for all nonzero z € R™.
Proof.(==) Pick nonzero z € R™. Suppose £ = S~ (z). Then
Az =210 + - + TmOm = Y1+ + Ykt

where y; = Z zja; and B;,w; € {1,--- ,n}, 1 <i<k+1,such that
Bi<j<wi
z;zp <0, if j € [Bi,wi] and j' € [Biv1, wit1].
zjzy >0, if 5,5 € [Bi wil.
Since
Yoy iU = Z (:‘Ujl o 'xjkﬂ)ajx A Nag
Fi€[Bi,wi]
>0, if (1) 1gpy; >0,
20, if (—l)k+16k+1 < 0,
where z;,z;,,, <0 for all s € {1,--- ,k}. By theorem 5.6 and remark 5.5,
1
ST [y, yyesa] | P |)<k+1-1=k. Thatis

S*(Az) < k= S (z).
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(=) To prove A is strictly sign regular with some signature ¢, we need to
show a, and ag both > 0 or < 0 for all o, 8 C {1,--- ,m} with |a| = | |.

‘Without loss of generality, suppose
a={w <+ <G < < Wy}

and

B={w < <w <@iz1 <+ < W1}

Then for t € [0,1] and ¢; € R,

S*(c10uw, + -+ + ¢iray,_, +ci((1 — t)ay, + ;) + Citaluyy + * 0 + Cht1Guy ;)

= SY(A(ciew, + -+ ci_trew,_, +ci((1 —t)e,, + teu;,,) +

I

S7(c1lw, + -+ cimrlu,_, +c((1 —t)ey, +tew,.,,) + A
e + Ck+lewk+1)

L t=24+1+14+k+1-(i+2)=k-1.

Hence by theorem 5.6 and remark 5.5,

Bug Acv s Aty A((1 =)@y, + taw, ) A aiga Ao+ Ady,,, >0
for all t € [0,1], or
Gy A - A,y A((1 = t)ay; +tau,,) Aaipa A Aagy,,, <0

for all £ € [0,1]. That is (1 — t)aq + tag > 0 for all t € [0,1] or < 0.

For ¢t = 0, we obtain a, > 0 or a, < 0.
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For t = 1, we obtain ag > 0 or ag < 0. By the function (1 — t)a, + tag is
continuous on t, a,, ag have the same sign.

Q.E.D.
Corollary 5.-19. Let A be an n x m STP matrix. Then
St(Az) < S7(z)
for all nonzero x € R™,

Proof. An n x m STP matrix is strictly sign-regular with signature €=
{1,1,---}. Hence by previous theorem, this corollary is obvious.

Q.ED.

6 Eigenvalues

We will study the eigenvalues of a strictly sign regular matrix in this

section. First, we need a well known theorem.

Theorem 6.1 (Perron’s Theorem). Let A € M,(R) and A > 0 with
eigenvalues p;(A), i € {1,---,n}. Suppose |pi(A)] > |pAA)] = -+ >
| u(4)]. Then

(a) p1(A) > 0is a real.
(b) There is an z € R™ with z > 0 and Az = p(A)z.

(c) p1(A) > |pi(A)|, where i € {2,--- ,n}.




The following theorem may be the most important theorem in this sec-
tion. It can be used to prove that any STP matrix has all positive, simple

eigenvalues.

Theorem 6.2. Let A € M,(R) be strictly sign regular with some signa-
ture €. Suppose [p1(A)] > [p2(A4)] > -+ = |pn(A)|, where p;(A) € C are
eigenvalues of A. Then p;(A) are reals, ==—p;(A) > |pi+1(A)| and the eigen-

! gi-1

vectors Uy, -+ , U, of p1(A),---, pn(A) respectively can be chosen such that

ug A---Au; >0 for alli € {1,--- ,n}. (Here g9 =1, pry1(A4) =0).

Proof. We will prove this theorem by induction on i. When ¢ = 1,
we get €14 > 0. By Perron’s theorem, |£101(A)] > |e1pk(A)| = | pr(A)|
for all £ > 1 and we can choose eigenvector u; > 0. In general, suppose
pr(A),- -+, pi_1(A) are reals with E—:i—lpj(A) > |pj+1(A4)| for all j < i—1 and
cor;esponding eigenvectors uy, - -- ,u;—; such that uy A--- Awu;_; > 0. Since

1
i /\ A > 0, by Perron’s theorem,

eip1(A)---pi(A) > |p1(A) - pi-1(A4)pis1(A4)]
= |p(A)] - |pi-1(A)]|pir1(A)]-

£ Eie
= =p(A)-- g—ipi—l(AN pi+1(A)]

€o i—-2
Hence

€q
€i-1

pi(A) > |pir1(4)]-

Note that by Perron’s theorem, g;u; A--- Au; > 0 or < 0. Hence we can

choose u; such that uy A--- Au; > 0.
Q.E.D.
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Theorem 6.3. Let A € M, (R) be strictly sign-regular with some signature
€. Let p1(A), -+, pn(A) be eigenvalues of A with corresponding eigenvectors

Uy, =y Un. Then S_('U,k) - S+(Uk) = k-1,

Proof. By previous theorem, u; A ---Aug > 0 or <0, then S¥(u) <k —1
by Remark 5.5 and Theorem 5.6. J, A~'.J, is strictly sign regular by Lemma
5.10, and

1
——
pe(A)

1
= o e

= Pn+l-k (JnA_lJn)Jnuk-

'LLA_ljn(Jnuk) = Jn

Hence S*(Jyux) <n+1—k—1=mn—k by Remark 5.5 and Theorem
5.6. Then by lemma 5.12, S~ (ux) > k — 1. Hence S™(ux) = ST (ux) =k — 1.
Q.E.D.

We can generalize theorem 6.3 to the following theorem.

Theorem 6.4. Let A € M, (R) be strictly sign-regular with eigenvalues p; >
py > -+ > p, and corresponding eigenvectors u;,- - ,u,. Fix s, k such that

1 <s<k<n. Then

k k
s—1< S'(Z ciu;) < S"‘(Zc,—ui) < kel

i=3s =35

for each 1 < s < k < n and ¢; not all zeros.

Proof. By theorem 6.2, u; A---Aug > 0 or < 0. By remark 5.5 and theorem
5.6, 5+(Zf=3 ciu;) < k—1. By lemma 5.10, J,A~'J, is strictly sign-regular.
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It has eigenvalues p—ll, o ,pl—ﬂ and eigenvectors Jnuy, Jytn_1,-- -, Jou;. Note

|i >|—3~|>--->|;—1[>0. Again Juup A -+ A Jpus > 0 or <0, then

Prn—1
k
S"'(ZJnu,;) <n-(s-1)—-1=n-s.
=3
Hence S™(3°F_,u;) < s — 1 by lemma 5.12.
Q.E.D.

Theorem 6.5. Let A be an n x n STP matrix and p, > --- > p, are
eigenvalues of A. Fix an integer k (1 < k < n). Let A™%) denote the principal

submatrix of A obtained by deleting its kth row and column and p:gk) T wonm T

4> 0 be the eigenvalues of A®). Then for all j € {1,---,n — 1},

pPj-1 > uﬁ-"} > pj+1 ( where py = p1).

Proof.  First, we will prove ,u,gk) > pjs1 forall j € {1,---,n — 1}. Let
P = (p1, -+ ,pa)" be an eigenvector of A with eigenvalues p;;;. Then Ap* =

pj+1P". By theorem 6.3,
S~(p) = S*(p) =J.
Let q denote a real eigenvector of A*) according to eigenvalue ,u,gk). Then
AR)q = ug,-k)q. Again, by theorem 6.3,
ST (@=5"(a)=j-1

Suppose @ = (g1, ** , Qk—1,qk+1," ** ,dn)"- Letd' = (g1, ) Gk-1,0, Gks1, "+~ 5 Gn)’*
A I
and q" = —-% Thus q”" = (q1,*** ,Gk—1,Tk, Gk+1," - * ,qn)" for some rx € R .

J
From corollary 5.19 and theorem 6.3, we have

j-1=8%q) £ 5*(q") <5 (d)=5"(@)=7-1
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Then
ST =5"(d)=j-1
o =10 then P = (p1, - ,Pk-1,Pks1,- " ,Pn)? is an eigenvector of A¥)

according to the eigenvalue p;4;. Since the vector p’ also has exactly j sign

changes, by theorem 6.3,

k (k)
Pj+1 = 5.421 < M5

If 7, =0, then ' = q" is an eigenvector of A with j — 1 sign changes.
q q g g

Hence by theorem 6.3. , we have

k
w? = p; > pisa.

Thus we may assume p;, r all are nonzero.

Without loss of generality, we may assume py, r; are both positive. Define

F={f:f>0,8(fd +p)<j—1}

and f* =infF.
We claim f* is a positive number. This is due to the following two reasons.

First, let f be large enough such that f|g;| > |p;| if ¢; # 0. We have

S7(fd' +p) < S*(fd' +p) < S*(q")=j-1.

Hence F # (). Second, let f be small enough and positive such that f|¢| <
|p:| if p; # 0. We have

S™(fd' +p) > S (p) =J.
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Hence F has the greatest lower bound f* > 0.
From the definition of f* and Remark 5.3.2, we get

ST(f'd+p)<ji-1

and
S*(fd +p) > (10)
for all positive f < f*. Now, A(f*q' +p) = f’,ugk}q” + pj1q. Let f =
« |k
fpfl} > 0. From Corollary 5.19,

SHfa"+p) < ST (f'd+p)<j-1

Since fq” +p and fq' + p differ only in the kth coordinate, where both are
positive. It follows that

S*(fd' +p)=S*(fd"+p) <j— L

From (10), this implies ]?> f*. Thus ,ugk} > Pj+1-
Next, we will prove forall j=1,---,n—1

k

Pbg g Pj-1-

Let y be a real eigenvector of A with eigenvalues p;_;. Then

Ay =pj1y and ST (y) =S~ (y) =5 -2

The vectors q,q’,q” are as above. If r, = 0, then ,ug-k)

®)
7—1

=p; < pj-1- Hyp =0,

then p;_; = > ,ugk). We may assume 7 and y; are both positive. Let

d*=inf{d:d > 0,5 (dy +dq) <j—2}.

Then we follow the previous argument, pgk)

& piadoralll €3 n~1.
Q.E.D.




Lemma 6.6.

1. The set of all STP matrices are dense in the set of all totally positive

matrices.

2. Let f: M,(R) — C" be a function such that

F(A) = (p1(A), pa(A), -+, pa(A)).

Then f is continuous, where p;(A) (1 < i < n) are eigenvalues of A

and [p1(A)| > -+ 2> |pa(A)].

Proof. of 1. See A.M. Whitney, A reduction theorem for totally positive
matrices, J. Analyse Math. 2:88-92(1952).

Proof. of 2. Tt is clear from the fact that eigenvalues of a matrix are the zeros

of its characteristic polynomial, which are continuous.

Theorem 6.7. Let A be an n x n TP matrix and p; > --- > py are eigen-
values of A. Fix an integer k (1 < k < n). Let A®) denote the princi-
pal submatrix of A obtained by deleting its kth row and column and let

,u.E_k) ieen p.,{,fjl be the eigenvalues of A®) Then forall j,1<j<n—1,

pj-1 2 #E’k} > pj41 ( where po = p1).

Proof. Apply above Lemma and theorem 6.5.
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7 Some results about STP matrices

Definition 7.1. Let A = [a;;] € Mpxm(R) and B = [b;;] € Mpxm(R). Then

the Hardmard Product of A and B is the matrix

AGOB= [aijbij] e i"'/fnxm(R)'

Lemma 7.2. (Minkowski's inequality)

If A, B € Myy,(R) are symmetric and positive definite, then
[det(A + B)#] > detA~ + detBn.
Proof. See Matrix Analysis (Horn and Johnson) p482.

The following examples are concerning about STP matrices.
Remark 7.3.
1. Let A, B € M3(R) be STP matrices. Then A® B is a STP matrix.

2. Let A, B € M,(R) be symmetric STP matrices. Then A+ B is a STP

matrix.
3. For all n € N, there exists an n x n STP matrix.

Proof. of 1. It is easy to check. We leave it to the reader.
' Q.E.D.
Proof. of 2. Just apply Lemma 7.2 for n = 1. We have det(A + B) >
detA + detB > 0.
Q.E.D.
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Proof. of 3. Consider the Vandermonde matrix V = [aij |nxn, @ij = (J +
)= (1 < i,57 < n). By using of the Vandermonde matrix always have

positive determinant H (j —14), V is a STP matrix.
' - n>j>i>1

Remark 7.4.

1. If A, B € M,xm(R) are STP matrices, then A ® B is not necessary to
be a STP matrix.

2. If A, B are STP matrices, then A ® B is not necessary to be a STP

matrix.

3. If A, B € M,(R) are STP matrices, then A + B is not necessary to be

a STP matrix.

4. A € M,(R) is a STP matrix, then A~! is not necessary to be a STP

matrix.

Counterexample of 1.

i 2.00 .02 1.1 1 01
Let A=1|1 102 1403 |,B=| 22 21 1 |. Then
1 1.03 1.061 1.99 19 1

1.1 1.01 0.102
AOB=| 22 2142 1403
1.99 1.957 1.061

Note detA ® B = —0.0536. Hence A ® B is not STP.

39




Counterexample of 2.

1 2 2 1
Let A= o= . Then
2 b 11

A®B =

e
(ST . S S
-
o
I TS L S NG R Y

Note
(A® B)[{1,2}/{2,3})] = [ . ﬂ
1 2

has determinant —2. Hence it is not a strictly totally positive matrix.

Counterexample of 3.

11 3 5 4 2 1
Iet A= 3 1 B . B=12 3 2 | Then
5 25 I 22
15 5 6
A+B=| 5 4 4
6 4 7

Note
(A® B)[{L,2}{2,3}] = [ 00 ]
4 4

has determinant —2. Hence it is not a strictly totally positive matrix.

Counterexample of 4.




2 1 =1
Let A= . Then A7 = . Hence it is not a strictly
11 -1 2

totally positive matrix.

Remark 7.5. As notations in theorem 6.5, in fact, let us fix £ = 1,n. Then

(k)

p; > by > pjy foralje{l,---,n— 1}.

We now given a counterexample for that & = 2.

Example 7.6. Let

1.1 1 0.1
A= 22 21 1
1949 19 I

Then the approximate eigenvalues of A are 3.8893 0.3021 0.0086. But the
approximate eigenvalues of A® is 1.4989 0.6011.

Definition 7.7. Let A = [a;j]nxm. We denote |A| = [|ai] nxm.

Question 7.8. Let A € M,.n(R) be a STP matrix. Is |A;},| a STP matrix

forn > 27

Now we check |A;},| is STP for n = 1,2. For n = 1, suppose A = [a]

1
and @ > 0. Then A~! = [=] > 0 is a STP matrix. For n = 2, suppose

a b 1
B is a STP matrix. Then | A7} =

A=1.
o =l and det

c a

Hence A is a STP matrix. But what happened when n > 27
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