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Notations

Let G be a simple connected graph of order n.

The adjacency matrix A = (aij) of G is a binary square matrix of order n
with rows and columns indexed by the vertex set V G of G such that for
any i, j ∈ V G, aij = 1 if i, j are adjacent in G.

d d d
1 2 3

A =

 0 1 0
1 0 1
0 1 0

 .

Let λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) denote the eigenvalues of A, and
λi(G) := λi(A).
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Eigenvalues help us to realize the structure of a graph

.Theorem..

......
For a graph G of order n, G is bipartite if and only if
λ1(G) = −λn(G).

Dongbo Bu, et al., Topological structure analysis of the protein-protein
interaction network in budding yeast, Nucleic Acids Research, 2003, Vol.
31, No. 9, 2443-2450.
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Eigenvalues help us to solve problems in Combinatorics

Let χ(G) denote the chromatic number of G.

.
Theorem (Wilf Theorem(1967) and Hoffman(1970))
..

......

For a graph G,

(λn(G)− λ1(G))/λn(G) ≤ χ(G) ≤ λ1(G) + 1.

To estimate the integer value χ(G), only approximations of λ1(G) and
λn(G) are necessary.
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Estimate the eigenvalues of a matrix by matrices of smaller
sizes
It is well-known that

λ1 = max
x∈Rn
x⊤x=1

x⊤Ax, λn = min
x∈Rn
x⊤x=1

x⊤Ax.

The following theorem generalizes this property.

.
Theorem (Cauchy interlacing theorem)
..

......

For m < n, and an m× n matrix S with SS⊤ = I,

λi(A) ≥ λi(SAS
⊤),

λn+1−i(A) ≤ λm+1−i(SAS
⊤)

for 1 ≤ i ≤ m.
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Example

Choose S = [I 0] in block form and then SAS⊤ becomes the adjacency
matrix of an induced subgraph of G.

List the eigenvalues of paths Pn and Pn−1 of orders n and n− 1
respectively:

2 cos π

n+ 1
> 2 cos 2π

n+ 1
> 2 cos 3π

n+ 1
> · · · > 2 cos (n− 1)π

n+ 1
> 2 cos nπ

n+ 1

↘ 2 cos π

n
> 2 cos 2π

n
> · · · > 2 cos (n− 1)π

n
↗
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The above method does not give us an upper bound of λ1(A).

Can we find a matrix M whose largest eigenvalue λ1(M) gives an upper
bound of λ1(G)?
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Perron-Frobenius Theorem

Let d1 ≥ d2 ≥ · · · ≥ dn denote the degree sequence of G.

.Theorem..

......

λ1(G) ≤ d1

with equality iff G is regular.

Let [d1] be a 1× 1 matrix. The above theorem says

λ1(G) ≤ λ1([d1]).
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Another upper bound of λ1(G) is
.
Theorem (Stanley, 1987)
..

......

λ1(G) ≤
−1 +

√
1 + 8|EG|
2

with equality if and only if G is the complete graph Kn.

Equivalently, λ1(G) is bounded above by

λ1





0 1 · · · 1 d1 − (n− 1)
1 0 1 · · · 1 d2 − (n− 1)
... . . . . . . . . . ...

1 0 dn − (n− 1)
1 · · · 1 dn+1 − n


(n+1)×(n+1)


,

where dn+1 := 0, thinking of an isolated vertex being added.
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An improvement of Stanley Theorem is
.
Theorem (Yuan Hong, Jin-Long Shu and Kunfu Fang, 2001)
..

......

λ1(G) ≤
dn − 1 +

√
(dn + 1)2 + 4(2|EG| − ndn)

2
,

with equality if and only if G is regular or there exists 2 ≤ t ≤ n such that
d1 = dt−1 = n− 1 and dt = dn.

Equivalently, λ1(G) is bounded above by

λ1





0 1 · · · 1 d1 − n+ 2
1 0 1 · · · 1 d2 − n+ 2
... . . . . . . . . . ...

1 0 dn−1 − n+ 2
1 · · · 1 dn − n+ 1


n×n


.
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Another version is
.
Theorem (Kinkar Ch. Das, 2011)
..

......

λ1(G) ≤
d2 − 1 +

√
(d2 + 1)2 + 4(d1 − d2)

2
,

with equality if and only if either G is regular, or d1 = n− 1 and
d2 = dn.

Equivalently,

λ1(G) ≤ λ1

([
0 d1
1 d2 − 1

]
2×2

)
.
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The parameter ϕℓ

For 1 ≤ ℓ ≤ n, let

ϕℓ(G) :=λ1





0 1 · · · 1 d1 − ℓ+ 2
1 0 1 · · · 1 d2 − ℓ+ 2
... . . . . . . . . . ...

1 0 dℓ−1 − ℓ+ 2
1 · · · 1 dℓ − ℓ+ 1


ℓ×ℓ


=
dℓ − 1 +

√
(dℓ + 1)2 + 4

∑ℓ−1
i=1(di − dℓ)

2
.
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.
Theorem (Chia-an Liu, —, 2013)
..

......

For each 1 ≤ ℓ ≤ n,
λ1(G) ≤ ϕℓ(G),

with equality iff G is regular or there exists 2 ≤ t ≤ ℓ such that
d1 = dt−1 = n− 1 and dt = dn.

Moreover, we show that the function ϕℓ(G) in variable ℓ is convex.

ϕ1 r rϕ2

r r r r
r ϕnr ϕn−1
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Small technical difficulty in the proof

The matrix 

0 1 · · · 1 d1 − ℓ+ 2
1 0 1 · · · 1 d2 − ℓ+ 2
... . . . . . . . . . ...

1 0 dℓ−1 − ℓ+ 2
1 · · · 1 dℓ − ℓ+ 1


ℓ×ℓ

needs not to be nonnegative.

Our formal proof follows the idea of Jinlong Shu and Yarong Wu 2004,
which applies Perron-Frobenius Theorem to U−1AU with some carefully
selected diagonal matrix U .
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The number mi :=
1
di

∑
j∼i dj is called the average 2-degree of i. List mi

in the decreasing ordering as
M1 ≥M2 ≥ · · · ≥Mn.

t t

t

t t

t t

t t

A non-regular graph with M1 =M2 = · · · =M9 = 3
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Applying Perron-Frobenius Theorem to
d1 0

d2
. . .

0 dn


−1

A


d1 0

d2
. . .

0 dn

 ,

we have
.Theorem..

......

λ1(G) ≤M1

with equality iff M1 =Mn.
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An improvement of the upper bound M1,
.
Theorem (Ya-hong Chen and Rong-yin Pan and Xiao-dong Zhang,
2011)
..

......

λ1(G) ≤
M2 − a+

√
(M2 + a)2 + 4a(M1 −M2)

2
,

with equality iff M1 =Mn, where a = max{di/dj | 1 ≤ i, j ≤ n}.

Equivalently,
λ1(G) ≤ λ1

([
0 M1

a M2 − a

])
.

(Dep. of A. Math., NCTU) Spectral Characterization of Graphs July 12, 2013 17 / 47



2013 International Conference on Combinatorics

Let b ≥ max{di/dj | 1 ≤ i, j ≤ n, i ∼ j}, and for 1 ≤ ℓ ≤ n, let

ψℓ(G) :=λ1





0 b · · · b M1 − (ℓ− 2)b
b 0 b · · · b M2 − (ℓ− 2)b
... . . . . . . . . . ...

b 0 Mℓ−1 − (ℓ− 2)b
b · · · b Mℓ − (ℓ− 1)b


ℓ×ℓ


=
Mℓ − b+

√
(Mℓ + b)2 + 4b

∑ℓ−1
i=1(Mi −Mℓ)

2
.

.
Theorem (Yu-pei Huang, —, 2013)
..

......

For each 1 ≤ ℓ ≤ n,
λ1(G) ≤ ψℓ(G),

with equality iff M1 =Mn.
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Problem: In the spirit of Cauchy interlacing theorem, give a uniform way
to find a matrix M with λ1(A) ≤ λ1(M) that generalizes the above
matrices.
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Sometimes, the eigenvector α > 0 (Perron vector) of A corresponding to
λ1(A) also involves in the study.

For instance the Perron vector of the web graph plays a key role in ranking
the web pages by Google.
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Our second spectral characterization of graphs is related to
distance-regular graphs.
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Distance-regular graphs

We recall definition of DRGs and their basic properties.

A graph G with diameter D is distance-regular if and only if for i ≤ D,

ci := |G1(x) ∩Gi−1(y)|,
ai := |G1(x) ∩Gi(y)|,
bi := |G1(x) ∩Gi+1(y)|

are constants subject to all vertices x, y with ∂(x, y) = i.
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∂(x, y) = i

dy dx��
��

��
����

��
ci

ai

bi

Note that ai + bi + ci = b0 and k := b0 is the valency of G.
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Distance-Regular graphs, also called P -polynomial schemes, form an
important subclass of association schemes.

”Association schemes are the frameworks on which coding theory, design
theory and other theories developed in a unified and satisfactory way. .......
There are many mathematical objects whose essence is that of association
schemes and many different names are given to the essentially the same
mathematical concept: Adjacency algebra, Bose-Mesner algebra,
centralizer ring, Hecke ring, Schur ring, character algebra, hypergroup,
probabilistic group, etc” ——–Eiichi Bannai and Tatsuro Ito
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Distance matrices

The matrices that we are concerned are square matrices with rows and
columns indexed by the vertex set V G. Let α be an eigenvector of A
corresponding to λ1(G) normalized to α⊤α = n. For each i let Ai be the
matrix with entries

(Ai)xy =

{
αxαy, if ∂(x, y) = i;
0, else.

Ai is called i-th distance matrix of Γ. Note A0 = I and A−1 = AD+1 = 0.

If G is regular then α = (1, 1, . . . , 1)⊤, so Ai is binary and A1 = A.
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t t

t
t
t

t
t t

G

A0 = I,

A1 =



0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0


,

A2 =



0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0


,

A3 =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


.
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Three-term recurrence relation of DRGs

.Theorem..

......

Let G be a regular graph. Then the following are equivalent.
...1 G is distance-regular;
...2 AAi = bi−1Ai−1 + aiAi + ci+1Ai+1 0 ≤ i ≤ D;
...3 there exist a unique sequence of polynomials p0(x) = 1, p1(x) = x,
. . ., pD(x) such that deg(pi) = i and Ai = pi(A).

The polynomials p0(x) = 1, p1(x) = x, . . ., pD(x) are called distance
polynomials of a DRG, but they can be reconstructed in a general graph.
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Let G a general graph G with adjacency matrix A and minimal polynomial
of degree d+ 1. Since A is symmetric, A has d+ 1 distinct eigenvalues.
The number d is called the spectral diameter of G. It is well-known that
d ≥ D.

Define an inner product on the space of real polynomials of degrees at
most d by

⟨f(λ), g(λ)⟩ = 1

n
trace

(
f(A)g(A)⊤

)
.

Then there exists a unique sequence of orthogonal polynomials p0(x) = 1,
p1(x), . . ., pd(x) such that

deg(pi) = i, and ⟨pi(x), pi(x)⟩ = pi(λ1).

G is t-partially distance-regular if Ai = pi(A) for 0 ≤ i ≤ t.
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The number
pd(λ1)

is called the spectral excess of G; while the number

δD :=
1

n
trace(ADA

⊤
D)

is called the excess of G.

When G is regular
δD =

1

n

∑
x∈V (G)

|GD(x)|

is the average number of vertices which have distance the diameter to a
vertex.
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Spectral Excess Theorem

.
Theorem (M.A. Fiol, E. Garriga and J.L.A. Yebra, 1996)
..

......

If G is regular then
δD ≤ pd(λ1),

with equality iff G is distance-regular.

Short proofs are given by [E.R. van Dam, 2008] and [M.A. Fiol, S. Gago
and E. Garriga, 2010].

Base on the short proofs, the regularity assumption of G is dropped in the
Spectral Excess Theorem by [Guang-Siang Lee, , 2012].
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Application

The odd girth of a graph is the smallest length of an odd cycle in the the
graph.

.
Corollary (E.R. van Dam and W.H. Haemers, 2011)
..
......A regular graph with odd girth 2d+ 1 is a generalized odd graph.

The above corollary generalizes the spectral characterization of generalized
odd graphs [Tayuan Huang, 1994], [Tayuan Huang and Chao Rong Liu,
1999]. Tayuan Huang is an Emeritus of NCTU.

The regularity assumption is dropped in the above corollary by
[Guang-Siang Lee, , 2012].
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Applying Spectral Excess Theorem to bipartite graphs, we have

.
Theorem (Guang-Siang Lee, , 2013)
..

......

Assume G is bipartite with bipartition X ∪ Y and even spectral diameter d.
Then the following are equivalent.
(i) δD = pd(λ1);

(ii) G is distance-regular;
(iii) G is 2-partially distance-regular and both of the halved graphs GX

and GY are distance-regular.
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The assumption 2-partially distance-regular is necessary
The following example gives a regular bipartite graph G with GX = GY

being a clique and even spectral diameter, but G is not 2-partially
distance-regular.

.Example..

......

Let G = K5,5 − C4 − C6 be a regular graph obtained by deleting a C4 and
a C6 from K5,5. We have sp G = {31, 21, 12, 02, (−1)2, (−2)1, (−3)1},
D = 3 < 6 = d and G2 = 2K5.

t t t t t
t t t t t

C4 + C6

(Dep. of A. Math., NCTU) Spectral Characterization of Graphs July 12, 2013 33 / 47



2013 International Conference on Combinatorics

.Example..

......

Let G be the Hoffman graph, which is a cospectral graph of 4-cube
obtained from 4-cune by applying GM-swithching of edges. Then
sp G = {41, 24, 06, (−2)4, (−4)1}, D = d = 4, and

Ai = pi(A) iff i ∈ {0, 1, 3}.

Note that G2 is the disjoint union of K8 and K2,2,2,2(= K8 − 4K2), which
are both distance-regular (sp K2,2,2,2 = {61, 04, (−2)3}).

The 4-cube. The Hoffman graph.

Copy from http://en.wikipedia.org/wiki/Hoffman_graph
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Another drawing of 4-cube and Hoffman graph

The 4-cube
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The Hoffman graph
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The assumption even spectral diameter is necessary

The following example gives a bipartite 2-partially distance-regular graph G
with D = d = 5 such that GX , GY are distance-regular graphs with
spectrum {61, 14, (−2)5} (the complement of petersen graph), but G is
not distance-regular.

.Example..

......

Consider the regular bipartite graphs G on 20 vertices obtained from the
Desargues graph (the bipartite double of the Petersen graph) by the
GM-switching. One can check (by Maple) that D = d = 5,
sp G = {31, 24, 15, (−1)5, (−2)4, (−3)1}, and

Ai = pi(A) iff i ∈ {0, 1, 2, 4}.

Then G is not distance-regular.
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Desargues graph and its cospectral mate
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Near DRGs

Similar to the definition of excess, one can define

δi :=
1

n
trace(AiA

⊤
i ),

and want to characterize the graphs satisfying δi = pi(λ1) for some i.

Note that
Ai = pi(A) ⇒ δi = pi(λ1).
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A bipartite graph with bipartitin V (G) = X ∪ Y is biregular if there exist
distinct integers k ̸= k′ such that every x ∈ X has degree k, and every
y ∈ Y has degree k′.

.Proposition..

......

Let G be a connected graph. Then δ1 ≥ p1(λ1), and the following
statements are equivalent.
(i) δ1 = p1(λ1),

(ii) A1 = p1(A),
(iii) G is regular or G is bipartite biregular.
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.
Theorem (Guang-Siang Lee, , 2013)
..

......

Let G be a connected bipartite graph with bipartition X ∪ Y and assume
that the spectral diameter d is odd. Then the following are equivalent.
(i) δi = pi(λ1) for even i;
(ii) δd−1 = pd−1(λ1);
(iii) G is 2-partially distance-regular and both of the halved graphs GX

and GY are distance-regular ⌊d/2⌋.

We shall provide two graphs that satisfy the above equivalent conditions,
but are not distance-regular graphs.
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We saw the first one before.

.
Example (W.H. Haemers and E. Spence, 1995)
..

......

Consider the regular bipartite graphs G on 20 vertices obtained from the
Desargues graph (the bipartite double of the Petersen graph) by the
GM-switching. One can check (by Maple) that D = d = 5,
sp G = {31, 24, 15, (−1)5, (−2)4, (−3)1}, and

Ai = pi(A) iff i ∈ {0, 1, 2, 4}.

Then G is not distance-regular.
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Desargues graph and its cospectral mate
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.
Example (D. Marušič and T. Pisanski, 2000)
..

......

Consider the Möbius-Kantor graph G. One can check (by Maple) that
D = 4 < 5 = d, and

Ai = pi(A) iff i ∈ {0, 1, 2, 4}.

Möbius-Kantor graph

Copy from https://en.wikipedia.org/wiki
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