D-bounded distance-regular graphs

Yu-pei Huang¹ (黃喻培) Yeh-jong Pan² (潘業忠) Chih-wen Weng¹ (翁志文) weng@math.nctu.edu.tw

Let $\Gamma=(X,\ R)$ denote a finite undirected, connected graph without loops or multiple edges with vertex set X, edge set R, distance function ∂ , and diameter $D:=\max\{\partial(x,y)\mid x,y\in X\}$. For a vertex $x\in X$ and an integer $0\leq i\leq D$, set $\Gamma_i(x):=\{z\in X\mid \partial(x,z)=i\}$. The $valency\ k(x)$ of a vertex $x\in X$ is the cardinality of $\Gamma_1(x)$. The graph Γ is called regular (with $valency\ k$) if each vertex in X has valency k. A graph Γ is said to be distance-regular whenever for all integers $0\leq h,i,j\leq D$, and all vertices $x,y\in X$ with $\partial(x,y)=h$, the number

$$p_{ij}^h = |\Gamma_i(x) \cap \Gamma_j(y)|$$

is independent of x, y. The constants p_{ij}^h are known as the intersection numbers of Γ .

From now on let $\Gamma = (X, R)$ be a distance-regular graph with diameter $D \geq 3$. For two vertices $x, y \in X$, with $\partial(x, y) = i$, set

$$B(x,y) := \Gamma_1(x) \cap \Gamma_{i+1}(y),$$

$$C(x,y) := \Gamma_1(x) \cap \Gamma_{i-1}(y),$$

$$A(x,y) := \Gamma_1(x) \cap \Gamma_i(y).$$

Note that

$$\begin{aligned} |B(x,y)| &= p_{1 \ i+1}^i, \\ |C(x,y)| &= p_{1 \ i-1}^i, \\ |A(x,y)| &= p_{1 \ i}^i \end{aligned}$$

are independent of x, y. For convenience, set $c_i := p_1^i|_{i-1}$ for $1 \le i \le D$, $a_i := p_1^i|_i$ for $0 \le i \le D$, $b_i := p_1^i|_{i+1}$ for $0 \le i \le D-1$ and put $b_D := 0$, $c_0 := 0$, $k := b_0$. Note that k is the valency of Γ .

¹ Department of Applied Mathematics, National Chiao Tung University, Taiwan R.O.C..

² Department of Computer Science and Information Engineering, Tajen University, Taiwan R.O.C..

Recall that a sequence x, z, y of vertices of Γ is geodetic whenever

$$\partial(x,z) + \partial(z,y) = \partial(x,y),$$

where ∂ is the distance function of Γ . A sequence x, z, y of vertices of Γ is weak-geodetic whenever

$$\partial(x,z) + \partial(z,y) < \partial(x,y) + 1.$$

Definition 1. A subset $\Delta \subseteq X$ is weak-geodetically closed if for any weak-geodetic sequence x, z, y of Γ ,

$$x, y \in \Delta \Longrightarrow z \in \Delta.$$

Weak-geodetically closed subgraphs are called strongly closed subgraphs in [6]. If a weak-geodetically closed subgraph Δ of diameter d is regular then it has valency $a_d + c_d = b_0 - b_d$, where a_d, c_d, b_0, b_d are intersection numbers of Γ . Furthermore Δ is distance-regular with intersection numbers $a_i(\Delta) = a_i(\Gamma)$ and $c_i(\Delta) = c_i(\Gamma)$ for $1 \le i \le d$ [10, Theorem 4.5].

Definition 2. Γ is said to be *i-bounded* whenever for all $x, y \in X$ with $\partial(x, y) \leq i$, there is a regular weak-geodetically closed subgraph of diameter $\partial(x, y)$ which contains x and y.

Note that a (D-1)-bounded distance-regular graph is clear to be D-bounded. The properties of D-bounded distance-regular graphs were studied in [11], and these properties were used in the classification of classical distance-regular graphs of negative type [12]. Before stating our main result we make one more definition.

By a parallelogram of length i, we mean a 4-tuple xyzw consisting of vertices of Γ such that $\partial(x,y) = \partial(z,w) = 1$, $\partial(x,w) = i$, and $\partial(x,z) = \partial(y,w) = \partial(y,z) = i-1$. The previous study of parallelogram-free distance-regular graphs can be found in [3, 7, 9]. The following theorem is our main result in this talk.

Theorem 3 Let Γ denote a distance-regular graph with diameter $D \geq 3$, and intersection numbers $a_1 = 0$, $a_2 \neq 0$. Fix an integer $1 \leq d \leq D-1$ and suppose Γ contains no parallelograms of any length up to d+1. Then Γ is d-bounded.

Theorem 3 is a generalization of [1, Lemma 4.3.13], [4], and is also proved under an additional assumption $c_2 > 1$ by A. Hiraki [2]. To prove Theorem 3, we need

many previous results of [2]. Theorem 3 also answers the problem proposed in [10, p. 299]. Many previous results prove its complement case $a_1 \neq 0$, for examples under an additional assumption $c_2 > 1$ [10] and under the assumptions $a_2 > a_1 > c_2 = 1$ [8]. For the assumptions $a_2 > a_1$ and $c_2 = 1$, H. Suzuki proves the case d = 2 in Theorem 3 [8]; in particular Γ contains a regular weak-geodetically closed subgraph Ω of diameter 2. Since the Friendship Theorem [13, Theorem 8.6.39] asserts no such Ω in the case $a_1 = c_2 = 1$, there must be no such distance-regular graph Γ with $a_2 > a_1 = c_2 = 1$ and Γ contains no parallelograms of length 3. Note that the assumption $a_1 \neq 0$ implies $a_2 \neq 0$ [1, Proposition 5.5.1(i)]. Hence Theorem 3 is also true under the weaker assumptions $b_1 > b_2$ and $a_2 \neq 0$. Our method in proving Theorem 3 also works for the case $b_1 > b_2$ and $a_2 \neq 0$ after a slight modification, but we decide not to duplicate the previous works.

On the other hand we suppose that Γ is d-bounded for $d \geq 2$. Let $\Omega \subseteq \Delta$ be two regular weak-geodetically closed subgraphs of diameters 1, 2 respectively. Since Ω and Δ have different valency $b_0 - b_1$ and $b_0 - b_2$ respectively, we have $b_1 > b_2$. It is also easy to see that Γ contains no parallelograms of any length up to d + 1 [10, Lemma 6.5]. With these comments, Theorem 3 is the final step in the following characterization of d-bounded distance-regular graphs in terms of forbidden parallelograms.

Theorem 4. Let Γ denote a distance-regular graph with diameter $D \geq 3$. Suppose the intersection number $a_2 \neq 0$. Fix an integer $2 \leq d \leq D-1$. Then the following two conditions (i), (ii) are equivalent:

- (i) Γ is d-bounded.
- (ii) Γ contains no parallelograms of any length up to d+1 and $b_1 > b_2$.

Some applications of Theorem 3 were previously given in [2], [5].

References

- [1] A.E. Brouwer, A.M. Cohen, and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, Berlin, 1989.
- [2] A. Hiraki, Distance-regular graphs with $c_2 > 1$ and $a_1 = 0 < a_2$, Graphs Combin. 25(1)(2009), 65-79.
- [3] Y. Liang, and C. Weng, Parallelogram-free distance-regular graphs, *J. Combin. Theory Ser. B*, 71(2)(1997), 231–243.

- [4] Y. Pan and C. Weng, Three bounded properties in triangle-free distance-regular graphs, *European J. Combin.*, 29(2008), 1634–1642.
- [5] Y. Pan and C. Weng, A note on triangle-free distance-regular graphs with $a_2 \neq 0$, J. Combin. Theory Ser. B, 99(2009), 266–270.
- [6] H. Suzuki, On strongly closed subgraphs of highly regular graphs, *European J. Combin.*, 16(1995), 197–220.
- [7] P. Terwilliger, Kite-free distance-regular graphs, Europ. J. of Combin., 16(4)(1995), 405–414.
- [8] H. Suzuki, Strongly closed subgraphs of a distance-regular graph with geometric girth five, Kyushu Journal of Mathematics, 50(2)(1996), 371–384.
- [9] C. Weng, Kite-free *P* and *Q*-polynomial schemes, *Graphs and Combinatorics*, 11(1995), 201-207.
- [10] C. Weng, Weak-geodetically closed subgraphs in distance-regular graphs, *Graphs and Combinatorics*, 14(1998), 275–304.
- [11] C. Weng, D-bounded distance-regular graphs, European Journal of Combinatorics, 18(1997), 211–229.
- [12] C. Weng, Classical distance-regular graphs of negative type, *J. Combin. Theory* Ser. B, 76(1999), 93–116.
- [13] D. B. West, *Introduction to Graph Theory*, Prentice Hall, Upper Saddle River, 1996.