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Abstract

For a square matrix C, the spectral radius p(C) is defined as
p(C) :=max{ |A| | \is an eigenvalue of C},

where |\| is the magnitude of complex number A. It is well known
that

0<C<C = p(C)<p(C),
where C’ is another square matrix of the same size. Now assume
that C’ has the the same row-sum sequence of a nonnegative
matrix C, C' has a positive eigenvector v = (v1, va,...,v,)T with
the i-th entry the least (i.e. v; < v; for all j), and C'[—|i) is the
submatrix of C’ obtained by deleting the i-th column. We will
show that

0< Cl-[i) < =) = p(C)<pA(C),

where p,(C’') is the largest real eigenvalue of C’ Modifying the
proof, we also obtain the dual statement that

Cl=[) = C[=[) =0 = p(C) = pr(C).
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Notations

1. When C is a real square matrix, the spectral radius p(C) is
defined as

p(C) :=max{ |A| | \is an eigenvalue of C},

where || is the magnitude of complex number A.
2. p(C) is the largest real eigenvalue of C.

3. For a simple undirected graph G, the spectral radius p(G) of
G is p(A), where A is the adjacency matrix of G.
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Perron-Frobenius theorem

Let d; be the maximum degree of G. It is well-known as a special
case of Perron-Frobenius Theorem that

p(G) < di.

Our realization of the above upper bound:

01 -+ 1 d—(n—2)
10 1 d—(n—2)
: L : = ()
11 - 0 d—(n—2)
11 -+ 1 d—(n—1)
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More notations

1. Let n be the order of G,

2. (di,d,...,d,) be the degree sequence in decreasing order
and

3. m=(di + -+ dy)/2 be the number of edges in G.
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Spectral upper bound with the number m of edges
In 1985 [2, Corollary 2.3], Brauldi and Hoffman showed that

m<k(k—1)/2 = p(G)<k-1,
and in 1987 [3], Stanley generalized it as

—14++v1+8m
< - V-7
p(G) < >

Our realization of the above upper bound:

01 - 1|di—(n—1)
10 1|do—(n—-1
: ’ ( ) _ n—1 1\’
: : 2m—n(n—1) —n
11 0| dy—(n—1)
11 1 0—n




Spectral upper bound with n,m and d,
In 1998 [4, Theorem 2], Yuan Hong showed that

p(G) <+v/2m—n+1, and in 2001 [5, Theorem 2.3], Hong et al.

generalized it as

_dn—1+4 V(dn +1)2 + 4(2m — nd,)

p(G) <

2

Our realization of the above upper bound:

01 1] di—(n-2)
10 1 d2—(n—2)
11 0| dr1—(n—2)
11 1] d,—(n—1)

n—2

- <2m—dn—(n—1)(n—2) dn—(ln—1)>T'



Spectral upper bound with d; and d,
In 2004 [6, Theorem 2.2], Jinlong Shu and Yarong Wu showed that

dp =1+ /(dr +1)2 +4(£ = 1)(ch — dp)
p(G)S 4 4 . 4

for 1 < ¢ < n. The special case £ = 2 is reproved by Kinkar Ch.
Das in 2011 [7].

Our realization of the above upper bound:

01 -« 1]d—(—-2)
10 1|dy—(0—2)
11 -+ 0|ldi—(0—2)
11 - 1|d-((-1)/,,

(-2 1 T
- <(€—1)(d1—€+2) dg—(£—1)> '
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Spectral upper bound with degree sequence
In 2013 [8, Theorem 1.7], Chia-an Liu and Chih-wen Weng showed
that

di—1+1/(d+1)7 + 4517 (d — d)
2

p(G) <

forl1 </ <n.

Our realization of the above upper bound:

01 - 1] dh—(-2)
10 1| db—(£—2)
11 -+ 0|dey—(L—2)
11 1 d-(t-1) /,,

(-2 1 T
7 (Zf_idi—(f—l)(f—2) de—(f—l)) '
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Spectral upper bound with row-sums (diagonals 0)
Let M = (mjj) be a nonnegative n x n matrix with diagonal entries
0, row-sums r; > rp > ... > rp, and e := maxi<; j<p mjj. In 2013
[9, Theorem 1.9], Yingying Chen, Huiqiu Lin and Jinlong Shu
showed that

= e+ + e +4e (i — )
M) <
p(M) < 5

forl1 </ <n.

Our realization of the above upper bound:

0 e e n—({—2e

e 0 e n—({—-2e

e 0 r_1—(—2)e

e e n—({-1e /,,

(¢ —2)e e T
- <Zf;11 r—(—-1){—-2)e rp—(L— 1)e> ’

11/28



Spectral upper bound with row-sums

From the assumptions in the last page, in addition assume
d := maxi<j<, mjj. In 2013 [10, Theorem 2.1], Xing Duan and Bo
Zhou showed that

rtd—ety(n—d+eP+dexiitn—n)
2

p(M) <

forl1 </ <n.

Our realization of the above upper bound:

d e - e n—(—-2e—-d
e d e n—(-2e—d
e e d rn1—({—-2)e—d
e -+ e re— (¢ —1)e Ixe

({—2)e+d e 4
- (Zf_%ri—(f—l)[(ﬁ—Q)ede] fe—(ﬁ—l)e) '
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Notations of matrices

1. C'[—]|n) is the submatrix of an n x n matrix C’ obtained by
deleting the last column.

2. C'[a|B] is the || x | 3| submatrix of C’ obtained by retrieving
the entries (a, b) € a x [.

3. C'(alB) is the (n —|«a|) x (n—|pB|) submatrix of C’ obtained
by deleting the entries (a, b) € a X 3.
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Rooted vectors

Since the spectral radius is invariant under a permutation of rows
and columns simultaneously, we shall assume i/ = n in the abstract
and give the following definition.

Definition
A column vector v = (vi,va,...,v,) " is called rooted if
vizvp>20for1<;<n-1
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Main theorem

If C = (cjj) is a nonnegative n x n matrix and C" = (c!

;i) is an
n X n matrix such that C’ has a positive rooted eigenvector
v/ = (v{,V4,...,vi)T > 0 for some positive eigenvalue )\ and the

following (I)-(11) hold
(I) € and C’ have the same row-sum vector, and
(1) Cl=[n) < C'[=[n),

then
p(C) < A
with equality if and only if for the index i with v; # 0 and
1<j<n-1,
(cij — ci)(vj — vp) =0, (1)
where vT = (v1,va,...,Vvp) is a nonnegative left eigenvector of C
for p(C).
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Proof.

By the assumption (I), we have that ¢/, — ¢j, = — Zjn;ll(cfj — ¢j)
for 1 < i < n. Hence

n n—1
((C" = Wi = (e — i) = > (cf — i) (v} = vp) = 0. (2)
j=1 j=1

Here the last inequality uses the assumption (Il) and v/ — v, > 0.
This is equivalent to

o' <V =\ (3)
Multiplying v from the left to all terms in (3), we have
p(CIvTV =vTic <viCV =V, (4)

Now delete the positive term v’ v/ to obtain p(C) < A and finish
the proof of the first statement of the theorem.

16
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Continue the Proof.

Assume that p(C) = ), so the inequality in (4) is equality.
Especially (Cv'); = (C'V'); in (3) for any i with v; # 0. Hence the
inequality in (2) is equality. Thus (1) holds.

Conversely, (1) implies that equalities hold in (2) for those i with
vi #0, (CV'); = Av/ in (3), equality holds in (4) and p(C) = A
sequentially.
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Example

lla o 10—ca—o
4 3 & 4 — 3 — C4
< A
p - 41 cs ¢ 4—c5—cp
41 cs g 4d—cr—cg
1 10
= p<4 4> =9, (C,'ER).
Note that

‘ C1 Co 10—C1—C2
3 G 4-—C3—C4
s ¢ 4—c5—¢p
C7 Cg 4—C7—C8

C' =

e

has rooted eigenvector (vq, v4, v, v,) = (5,4,4,4) > 0 which has
{j | v # v4} = {1}. Hence the inequality < is an equality.
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The dual theorem

If C = (cjj) is a nonnegative n x n matrix and C" = (c!

;i) is an
n X n matrix such that C’ has a positive rooted eigenvector
v/ = (v{,V4,...,vi)T > 0 for some positive eigenvalue )\ and the

following (I)-(11) hold
(I) € and C’ have the same row-sum vector, and
(I1) Cl=[n) = C'[=[n) = 0,

then
p(C) = A
with equality if and only if for the index i with v; # 0 and
1<j<n-1,
(cij — ci)(vj — vp) =0, (5)
where vT = (v1,va,...,Vvp) is a nonnegative left eigenvector of C
for p(C).
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To apply the main theorem, we need to find a way to construct an
n x n matrix C' = (cl’J) which has a positive rooted eigenvector

v/ = (v{,v4,...,vi)T > 0 for some positive eigenvalue X
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Rooted matrices

Definition
An n x n matrix C" = (cf;) is called rooted if its first n —1 columns
and the row-sum vector (r{, 5, ...,r,)T are all rooted.
01 1 d1 - (n - 1)
10 1 do—(n—1)
: : : +/
11 0 dy—(n—1)
11 1 0—n
Lemma

If C' is a rooted matrix, then p(C') = p,(C’) and C' has a rooted
eigenvector for p,(C"). Moreover, if C'[n|n) is positive, then v' is
positive.
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Equitable quotient
For a partition N = {my,mo,..., 7} of {1,...,n}, if

Map = E c,{j for all i € m,
JET

then the £ x ¢ matrix F(C’) = (map) is called the equitable
partition of C’ with respect to I.

1 2 3|3 3|6 6

3 2 1|14 2|8 4

2 3 1|5 1|9 3 6 6 12
Fl 3 5 6|1 1|3 4 |=1|14 2 7

4 6 4|2 0|4 3 4 4 5

0 2 2|2 2|3 2

1 3 03 1|1 4




Characteristic matrix of a partition

For a partition I = {1, 7o, ..., m} of {1,2,...,n}, let S denote
the n x £ characteristic matrix of T1.

N={{1,2,3},{4,5},{6,7}}
100 1
100 1
100 1 1
= S=|0o 10|, s|2=]2
010 3 2
00 1 3
00 1 3
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Lemma

For a partition M = {1, 7, ..., m} of {1,2,...,n} with n € 7y,
and a square matrix C’ with an equitable quotient F(C),

F(C') has a positive rooted eigenvector v for p,(F(C’))
)

= (' has the positive rooted eigenvector Sv for p,(F(C')).

Moreover p,(C’) > p.(F(C")).
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Main application
Let M = {71, m2,...,m¢} be a partition of {1,2,...,n} with
n € my, and C an n X n nonnegative matrix with row-sums
n>rn>-->r Forl<a</{and1<b</{-—1, choose r,
chp, such that

r, = maxft;
1E€ET,
/ .
Cop = g Cjj forall i € m,
JET
Cip = Cp>0 fora# b
-1
r 2 : /
Cag = ra — Caj'
j=1

Let C' = (cl,)1<ab<e- Then

p(C) < pr(C).
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Example

2 1 3|3 3|12 0
4 2 1|4 2|6 4
2 3 1|4 1|8 3 7 6 24-13
p| 35 3|1 13 4 [<p |12 2 20—14
5 6 1|1 0|3 3 4 4 13-8
0 2 1|2 2|6 0
2 2 0(2 1|1 4

The 7 x 7 matrix on the left has row-sums 24, 23,22 20,19,13,12.

If applying equitable quotient to a matrix that majors the above
7 x 7 matrix, one will find the upper bound

7 6 12
prl12 2 7
4 4 6

which is larger than ours.
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Thank you for your attention.
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