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Spectral radius

When C is a real square matrix, the spectral radius ρ(C) is defined
as

ρ(C) := max{ |λ| | λ is an eigenvalue of C},

where |λ| is the magnitude of complex number λ.

When C is nonnegative, ρ(C) is known to be an eigenvalue of C.
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A snapshot of our main method

The following is well known from the majorization-monotone
property of spectral radii of nonnegative matrices :

ρ

 2 2 1
0 3 2
1 2 1

 ≥ ρ

 2 1 1
0 3 1
1 2 1

 = ρ

(
3 1
3 1

)
= 4.

Our main result implies

ρ

 2 2 1
0 3 2
1 2 1

 ≥ ρ

 2 1 2
0 3 2
1 2 1

 = ρ

(
3 2
3 1

)
= 2 +

√
7.

(One column exception is allowed in majorization-monotone
property if the row-sums of two matrices are unchanged.)
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Dual result

ρ



2 1 3 3 3 12 0
4 2 1 4 2 6 4
2 3 1 4 1 8 3
3 5 3 1 1 3 4
5 6 1 1 0 3 3
0 2 1 2 2 6 0
2 2 0 2 1 1 4


(same row-sums sequence)

≤ ρ



2 2 3 3 3 12 -1
4 2 1 4 2 6 5
2 3 2 4 2 8 3
4 5 3 1 1 3 3
5 6 1 1 1 3 3
1 2 1 2 2 6 -1
2 2 0 2 2 1 4


= ρ

 7 6 11
12 2 6
4 4 5

 ≈ 18.69
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Outline

0. Introduction

1. The non-complete bipartite graph with e edges which has the
maximum spectral radius

2. The (non-complete) bipartite graph with e edges and bi-order
p, q which has the maximum spectral radius

3. Spectral bounds of a nonnegative matrix
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Notations
Let G denote a graph with e = e(G) edges without isolated
vertices. Let A = A(G) be the adjacency matrix of G. The spectral
radius ρ(G) of G be the spectral radius of A.

Example

r r r
1 2 3

G

A =A(G) =

 0 1 0
1 0 1
0 1 0

 ,

e =e(G) = 2, ρ(G) = ρ(A) =
√
2.
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Spectral radii and graph invariants

Let G be a graph of order n and size e with diameter D, minimum
degree δ, maximum degree ∆, average degree d, clique number ω
and dominating number γ. The following are well-known in the
spectral graph theory.

I δ ≤ d̄ ≤ ρ(G) ≤ ∆

I ω ≥ n
n−ρ(G)

I (n − 1)
1
D ≤ ρ(G) < ∆− 1

nD
I If G is triangle-free, then ρ(G) ≤ √e

7 / 58



Brualdi-Hoffman Conjecture (1976)

Conjecture
If
(d
2

)
< e ≤

(d+1
2

)
, the graph with the maximum spectral radius

consists of the complete graph Kd to which a new vertex of degree
e −

(d
2

)
is added, together with probably some isolated vertices.

'

&

$

%
Kn−1rn

r...rr

Rowlinson proved this conjecture in 1988.
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From now on, we assume G is bipartite with e edges.
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A. Bhattacharya, S. Friedland, and U.N. Peled show the following.
Theorem (BFP 2008)

ρ(G) ≤
√

e(G)

with equality iff G is a complete bipartite graph with possible some
isolated vertices.

rr
r

rr
rr rr

rr
r
rr
r

r

r r r r r r r r r r r r
e(G) = 12

ρ(G) =
√
12
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K±
s,t

Define

K−
s,t := Ks,t − {st},

K+
s,t := Ks,t + {s(t + 1)′} (2 ≤ s ≤ t).

Example:

r2

r1

r 3′
r 2′
r 1′

K−
2,3 = K+

2,2

12 / 58



Value of ρ(G) when e is fixed

r0 -r

K+
s,s

∥√
e+
√

e2−4(e−1−
√

e−1)
2 r

Ks,t
↓√e

G = K−
2,2 or G ̸= Ks,t,K+

s,t,K−
s,t G = K+

s,t or K−
s,t except K−

2,2

6 6

Moreover we find

e = st − 1, s ↘, t ↗ ⇒ ρ(K−
s,t) ↗,

e = st + 1, s ↘, t ↗ ⇒ ρ(K+
s,t) ↗,
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Extremal graphs

Theorem
If G has maximum spectral radius among bipartite non-complete
graphs with e edges then

e (e − 1, e + 1) G
odd K−

2,t
even (prime,not prime) K−

s,t with s ≥ 2 the least
even (not prime,prime) K+

s,t with s ≥ 2 the least

even (not prime,not prime)
neither primes case

K−
s,t with s ≥ 2 the least or
K+

s,t with s ≥ 2 the least

even (prime,prime)
twin primes case unknown (no K±

st with s ≥ 2)
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Numerical comparisons of the neither primes case
In the case that e ≤ 100 is even and neither e − 1 nor e + 1 is a
prime, we determine which G of K−

s,t with s ≥ 2 the least and K+
s′,t′

with s′ ≥ 2 the least has larger eigenvalue, where
e = st − 1 = s′t′ + 1.

e ρ(K−
s,t) ρ(K+

s′,t′) winner
26

√
13 + 3

√
17

√
13 +

√
149 −

34
√

17 +
√
265

√
17 +

√
267 +

50
√

25 +
√
593

√
25 +

√
583 −

56
√

28 +
√
748

√
28 +

√
740 −

64
√

32 +
√
976

√
32 +

√
982 +

76
√
38 +

√
1384

√
38 +

√
1394 +

86
√
43 +

√
1813

√
43 +

√
1781 −

92
√
46 +

√
2096

√
46 +

√
2078 −

94
√
47 +

√
2137

√
47 +

√
2147 +

15 / 58



A theorem for twin primes case

Let ρ(e) denote the maximum ρ(G) of a bipartite non-complete
graph G with e edges.

Theorem
If e ≥ 4 then (e − 1, e + 1) is a pair of twin primes if and only if

ρ(e) <

√√√√e +
√

e2 − 4(e − 1−
√

e − 1)

2
.
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K(p, q, e) and K0(p, q, e)

Definition
(i) K(p, q, e) is the family of subgraphs of Kp,q with e edges

without isolated vertices which are not complete bipartite
graphs

(ii) K0(p, q, e) is the subset of K(p, q, e) such that each graph in
the subset is obtained from a complete bipartite graph by
adding one vertex and a corresponding number of edges.
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K(3, 4, 5), K0(3, 4, 5) and ρ(G)

rr
r

rr
rr

√
10+2

√
17

2

rr
r

rr
rr

√
10+2

√
13

2

rr
r

rr
rr

√
10+2

√
5

2

rr
r

rr
rr

2

rr
r

rr
rr

≈ 1.8019

rr
r

rr
rr

√
6+

√
2

2

rr
r

rr
rr

2

rr
r

rr
rr

√
3

rr
r

rr
rr

1+
√
5

2

rr
r

rr
rr

√
2 +

√
2

rr
r

rr
rr

√
3

19 / 58



BFP Conjecture for K(p, q, e)
The following is a bipartite graphs analogue of Brualdi-Hoffman
conjecture proposed by Bhattacharya, Friedland and Peled.

BFP Conjecture for K(p, q, e)
If G ∈ K(p, q, e) such that ρ(G) = maxH∈K(p,q,e) ρ(H) and
K0(p, q, e) ̸= ∅, then G ∈ K0(p, q, e).

Example

rr rrr

r

p = 2, q = 4, e = 5

rr
rr
rr
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Some previous results

Theorem (Bhattacharya, Friedland and Peled 2008)
BFP Conjecture for K(p, q, e) holds for e = st − 1 for s, t satisfying
2 ≤ s ≤ p ≤ t ≤ t + (t − 1)/(s − 1).

Theorem (Liu and Weng, 2015)
BFP Conjecture for K(p, q, e) holds for e > pq − min(p, q).

Remark
The is no proper complete bipartite subgraph of Kp,q with
e > pq − min(p, q) edges.
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A slight improvement

If e ∈ {st − 1, st + 1 | s ≤ p, t ≤ q}, then K−
s,t ∈ K0(p, q, e) or

K+
s,t ∈ K0(p, q, e). The following theorem is an immediate

consequence.
Theorem
BFP Conjecture for K(p, q, e) holds with

e ∈ {st − 1, st + 1 | s ≤ p, t ≤ q}.
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The graph GD
For a sequence D of positive integers in nonincreasing order, one
can define the bipartite graph GD with bipartition
X = {x1, x2, . . . , xp},Y = {y1, y2, . . . , yd1} such that

E(GD) = {xiyj|1 ≤ i ≤ p, 1 ≤ j ≤ di}.

Example
For D = (4, 2, 2, 1, 1) or D = (5, 3, 1, 1), we have the isomorphic
graph GD.

rr
rr
r

rr
rr

G(4,2,2,1,1) = G(5,3,1,1)
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Disproof of the BFP conjecture

Proposition
If q > p + 2 ≥ 5 then BFP Conjecture for K(p, q, p(q − 1)) is false.

Proof.
With sequences

D1 =(q, q − 1, . . . , q − 1, q − 2),

D2 =(q, q, . . . , q, q − p),

GD1 ,GD2 ∈ K(p, q, p(q − 1)) and K0(p, q, p(q − 1) = {GD2}. By
direct computation, ρ(GD2) < ρ(GD1).
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C(p, q, e)

From now on the complete bipartite graphs will be included in our
consideration.

Definition
(i) C(p, q, e) is the family of subgraphs of Kp,q with e edges

without isolated vertices.

(ii) C0(p, q, e) is the subset of C(p, q, e) such that each graph in
the subset is a complete bipartite graph or a graph obtained
from a complete bipartite graph by adding one vertex and a
corresponding number of edges.
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Weak BFP Conjecture

We propose the following conjecture.

Weak BFP Conjecture for C(p, q, e)
If G ∈ C(p, q, e) such that ρ(G) = maxH∈C(p,q,e) ρ(H), then
G ∈ C0(p, q, e).
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e ≥ pq − max(p, q) or p ≤ 5

We have the following two theorems.
Theorem
If e ≥ pq − max(p, q) then the weak BFP Conjecture for C(p, q, e)
is true.

Theorem
If min(p, q) ≤ 5 then the weak BFP conjecture for C(p, q, e) is
true.

The proofs of the above two Theorems employ some new sharp
upper bounds of the spectral radii of nonnegative matrices which
will be the last part of my talk.
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Motivation

A bipartite graph G has adjacency matrix of the block form

A(G) =
(

0 B
BT 0

)
.

Then
A2 =

(
BBT O

O BTB

)
.

Since BBT and BTB have the same spectral radius,

ρ2(G) = ρ(BBT) = ρ(BTB).

Because BBT is no longer a binary matrix, we need spectral theory
for general nonnegative matrices C.
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Motivation

Let C and C′ be two n × n nonnegative matrix. It is well-known as
a consequence of Perron-Frobenius Theorem that

C ≤ C′ ⇒ ρ(C) ≤ ρ(C′).

Moreover if C is irreducible then ρ(C) = ρ(C′) if and only if
C = C′.

We might expect to find another matrix C′ such there are many C
related to C′ in some way and ρ(C) ≤ ρ(C′). Moreover we expect
the matrix C with ρ(C) = ρ(C′) is not unique.
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Matrix notation
For a matrix M and a subset α of the set of row indices and a
subset β of the set of column indices, we use M[α|β] to denote the
submatrix of M which restricts the positions in α× β.
Example

M =


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0



⇒ M[[4]|[3]] =


0 1 1
1 0 0
1 0 0
1 1 0

 , M[{4}|[4]] = (1, 1, 0, 0),

where [n] := {1, 2, . . . , n}.
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Rooted matrix

An m × n matrix C′ = (c′ij) is rooted if

c′ij ≥c′nj for 1 ≤ i ≤ m and 1 ≤ j ≤ n − 1, and

r′i :=
n∑

j=1

c′ij ≥r′n :=

n∑
j=1

c′nj for 1 ≤ i ≤ m − 1.

Example
The matrix

C′ =

6 6 −1
8 2 0
5 2 0


with row-sum vector (r′1, r′2, r′3)T = (11, 10, 7)T, which is a rooted
vector.
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ρr(C′)

Remark
As a rooted matrix C′ is not always nonnegative, ρ(C′) is not
necessary to be the largest real eigenvalue of C′. Let ρr(C′) denote
the largest real eigenvalue of C′ (Its existence is proved).
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A comment on rooted matrix

Remark

C′ is nonnegative ⇒
(

C′ 0
u a

)
is rooted and ρ(C′) = ρ

(
C′ 0
u a

)
for suitable chosen of row vector u ≥ 0 and scalar a ≤ 0 to have 0
row-sum in the last row.
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Construct C′ from C

From an n × n matrix C = (cij), we construct another n × n matrix
C′ = (c′ij) that satisfies
(i) C[[n]|[n − 1]] ≤ C′[[n]|[n − 1]];
(ii) ri :=

∑n
j=1 cij ≤ r′i :=

∑n
j=1 c′ij for 1 ≤ i ≤ n;

(iii) C′ + kI is rooted for some k;
(iv) C′[{n}|[n − 1]] > 0.

Example

C =

3 6 2
8 1 1
5 5 0

 , C′ =

6 6 −1
8 2 0
5 5 0


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A restricted form of our main method

Theorem
With the notation from the last page, we have

ρ(C) ≤ ρr(C′).
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The set K

To study the case of equality ρ(C) = ρ(C′) of the theorem in the
last page, we need information of the eigenvector
v′ = (v′1, v′2, . . . , v′n)T (known to be positive and rooted) of C′ for
ρr(C′) and the set

K = {j | v′j > v′n}.
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An easier way to find K

Let K1 ={i | r′i > r′n}, and when Kt is defined, let
Kt+1 ={i /∈

∪
s≤t

Ks | c′ij > c′nj for some j ∈
∪

s≤t Ks}.

Lemma
If r′i > 0 for 1 ≤ i ≤ n − 1 then{

K = ∅, if K1 = ∅;
K =

∪∞
s=1 Ks otherwise.
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The equality part of the theorem

Theorem
With the notation in the last few pages, if C is irreducible and
r′i > 0 for 1 ≤ i ≤ n − 1, then ρ(C) = ρr(C′) if and only if

ri =r′i for 1 ≤ i ≤ n
c′ij =cij for 1 ≤ i ≤ n and j ∈ K.

(cij is free if j ̸∈ K.)
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A non-example holds

ρ



2 1 3 3 3 12 0
4 2 1 4 2 6 4
2 3 1 4 1 8 3
3 5 3 1 1 3 4
5 6 1 1 0 3 3
0 2 1 2 2 6 0
2 2 0 2 1 1 4


≤ ρ



2 2 3 3 3 12 -1
4 2 1 4 2 6 5
2 3 2 4 2 8 3
4 5 3 1 1 3 3
5 6 1 1 1 3 3
1 2 1 2 2 6 -1
2 2 0 2 2 1 4



Although the matrix on the right violates some pieces of the
assumptions in C′, the above inequality still holds.
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The matrix C′ after equitable quotient matters

ρ



2 1 3 3 3 12 0
4 2 1 4 2 6 4
2 3 1 4 1 8 3
3 5 3 1 1 3 4
5 6 1 1 0 3 3
0 2 1 2 2 6 0
2 2 0 2 1 1 4


(same row-sums sequence)

≤ ρ



2 2 3 3 3 12 -1
4 2 1 4 2 6 5
2 3 2 4 2 8 3
4 5 3 1 1 3 3
5 6 1 1 1 3 3
1 2 1 2 2 6 -1
2 2 0 2 2 1 4


= ρ

 7 6 11
12 2 6
4 4 5

 ≈ 18.69
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Applications

In the following few pages, we shall provide some applications of
the inequality ρ(C) ≤ ρr(C′).

The matrices C attaining the equality can be characterized, but for
simplicity, we omit the discussion here.

42 / 58



Realization a result of Xing Duan and Bo Zhou
Theorem
Let C = (cij) be a nonnegative n × n matrix with row-sums
r1 ≥ r2 ≥ · · · ≥ rn and d := maxi cii, f := maxi ̸=j cij. Then for
1 ≤ ℓ ≤ n,

ρ(C) ≤
rℓ + d − f +

√
(rℓ − d + f)2 + 4f

∑ℓ−1
i=1 (ri − rℓ)

2

Proof.

C′ =


d f · · · f r1 − (ℓ− 2)f − d
f d f r2 − (ℓ− 2)f − d
... . . . ... ...
f f · · · d rℓ−1 − (ℓ− 2)f − d
f f · · · f rℓ − (ℓ− 1)f


ℓ×ℓ

.
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A little generalization
Theorem
Let C = (cij) be a nonnegative n × n matrix with row-sums
r1 ≥ r2 ≥ · · · ≥ rn and d ≥ max1≤i≤ℓ−1 cii, f ≥ max1≤i ̸=j≤ℓ−1 cij.
Then for 1 ≤ ℓ ≤ n,

ρ(C) ≤
rℓ + d − f +

√
(rℓ − d + f)2 + 4f

∑ℓ−1
i=1 (ri − rℓ)

2

Proof.

C′ =


d f · · · f r1 − (ℓ− 2)f − d
f d f r2 − (ℓ− 2)f − d
... . . . ... ...
f f · · · d rℓ−1 − (ℓ− 2)f − d
f f · · · f rℓ − (ℓ− 1)f


ℓ×ℓ

.
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A theorem of Richard Stanley in 1987
Theorem
Let C = (cij) be an n × n symmetric (0,1) matrix with zero trace.
Let the number of 1’s of C be 2e. Then

ρ(C) ≤ −1 +
√
1 + 8e

2
.

Proof.
Use 2e =

∑n
i=1 rn and

C′ =


0 1 · · · 1 r1 − (n − 1)

1 0
. . . 1 r2 − (n − 1)

... . . . . . . ... ...
1 1 · · · 0 rn − (n − 1)
1 1 · · · 1 −n

 .
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A generalization to nonnegative matrices
Theorem
Let C = (cij) be an n × n nonnegative matrix. Let m be the sum of
entries, and d ≥ maxi cii, f ≥ maxi̸=j cij. Then

ρ(C) ≤ d − f +
√

(d − f)2 + 4fm
2

.

Proof.
Use m =

∑n
i=1 rn = n(n − 1)f + nd and

C′ =


d f · · · f r1 − d − (n − 1)f
f d . . . f r2 − d − (n − 1)f
... . . . . . . ... ...
f f · · · d rn − d − (n − 1)f
f f · · · f −nf

 .
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Realization a result of Csikvári in 2009
Theorem
Assume that the set {v1, v2, . . . , vk} forms a clique in the graph G
and V(G) \K = {vk+1, . . . , vn} forms an independent set. Let e′ be
the number of edges between K and V(G) \ K. Then

ρ(G) ≤ k − 1 +
√
(k − 1)2 + 4e′
2

.

Proof.
Use e′ =

∑k
i=1 ri and

C′ =


0 1 · · · 1 r1 − (k − 1)

1 0
. . . 1 r2 − (k − 1)

... . . . . . . ... ...
1 1 · · · 0 rk − (k − 1)
1 1 · · · 1 0

 .
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ρ(G) ≤ ρ(GD(G))

To illustrate how our method is applied to bipartite graph, we need
the following theorem of A. Bhattacharya, S. Friedland, and U.N.
Peled in 2008.

Theorem
If a bipartite graph G has degree sequence D = D(G) of one part
then ρ(G) ≤ ρ(GD) with equality if and only if G = GD (up to
isomorphism).
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The spectral radius of GD

The bipartite graph GD has adjacency matrix of the block form

A(G) =
(

0 B(D)
B(D)T 0

)
. Then A2 =

(
B(D)B(D)T O

O B(D)TB(D)

)
,

and

C := B(D)B(D)T =


d1 d2 d3 dp
d2 d2 d3 dp
d3 d3 d3 dp

. . .
dp dp dp dp

 .

Since B(D)B(D)T and B(D)TB(D) have the same spectral radius,

ρ2(GD) = ρ(A2) = ρ(C).
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A proof of the next theorem
For D = (d1, d2, . . . , dp) in nonincreasing order,

C =


d1 d2 d3 dp
d2 d2 d3 dp
d3 d3 d3 dp

. . .
dp dp dp dp


and fix 1 ≤ ℓ ≤ p, we will choose

C′ =


d1 d1 · · · d1 r1 − (ℓ− 1)d1
d2 d2 · · · d2 r2 − (ℓ− 1)d2
d3 d3 · · · d3 r3 − (ℓ− 1)d3
... ... . . . ... ...

dℓ dℓ · · · dℓ rℓ − (ℓ− 1)dℓ

 ,

where ri = (i − 1)di +
∑p

k=i dk is the i-th row-sum of C to obtain
the theorem in the next page.
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A theorem for bipartite graphs

Theorem
Let G be a bipartite graph and D = (d1, d2, . . . , dp) be the degree
sequence of one part of G in decreasing order. Then for 1 ≤ ℓ ≤ p,

ρ(G) ≤

√√√√ r1 +
√
(2rℓ − r1)2 + 4dℓ

∑ℓ
i=1(ri − rℓ)

2
.

The above theorem is the main tool for our proof of the weak BFP
Conjecture for C(p, q, e) with e ≥ pq − max(p, q) or min(p, q) ≤ 5.
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A new lower bound
Our method also has dual version.
Theorem
Let C = (cij) be an n × n nonnegative matrix with row-sums
r1 ≥ r2 ≥ · · · ≥ rn. For 1 ≤ t < n, let d = maxt<i≤n cii and
f = max1≤i≤n,t<j≤n,i ̸=j cij. Assume that 0 < rn − (n − t − 1)f − d.
Then

rt − f + d +
√

(rt − (2n − 2t − 1)f − d)2 + 4(n − t)(frn − (n − t − 1)f − d)
2

is a lower bound of ρ(C).

Proof.

C′ =

(
rt − (n − t)f (n − t)f

rn − (n − t − 1)f − d (n − t − 1)f + d

)
.
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A general form of our main method

Theorem
Let C = (cij), C′ = (c′ij), P and Q be n × n matrices. Assume that
(i) PCQ ≤ PC′Q;
(ii) C′ has an eigenvector Qu for λ′ for some nonnegative column

vector u = (u1, u2, . . . , un)T ≥ 0 and λ′ ∈ R;
(iii) C has a left eigenvector vTP for λ for some nonnegative row

vector vT = (v1, v2, . . . , vn) ≥ 0 and λ ∈ R; and
(iv) vTPQu > 0.

Then λ ≤ λ′. Moreover, λ = λ′ if and only if

(PC′Q)ij = (PCQ)ij for 1 ≤ i, j ≤ n with vi ̸= 0 and uj ̸= 0.
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Quick realization
To realize the theorem in the last page, we might investigate its
special case P = Q = I.
Theorem
Let C = (cij), C′ = (c′ij) be n × n matrices. Assume that
(i) C ≤ C′;
(ii) C′ has an eigenvector u for λ′ for some nonnegative column

vector u = (u1, u2, . . . , un)T ≥ 0 and λ′ ∈ R;
(iii) C has a left eigenvector vT for λ for some nonnegative row

vector vT = (v1, v2, . . . , vn) ≥ 0 and λ ∈ R; and
(iv) vTu > 0.

Then λ ≤ λ′. Moreover, λ = λ′ if and only if

(C′)ij = (C)ij for 1 ≤ i, j ≤ n with vi ̸= 0 and uj ̸= 0.
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As simple as majorization-monotone property

Theorem
Let C = (cij), C′ = (c′ij) be n × n matrices. Assume that
(i) 0 ≤C ≤ C′;
(ii) C′ has an eigenvector u for λ′ for some nonnegative column

vector u = (u1, u2, . . . , un)T ≥ 0 and λ′ ∈ R;
(iii) C has a left eigenvector vT for λ for some nonnegative row

vector vT = (v1, v2, . . . , vn) ≥ 0 and λ ∈ R; and
(iv) vTu > 0.

Then λ ≤ λ′. Moreover, λ = λ′ if and only if

(C′)ij = (C)ij for 1 ≤ i, j ≤ n with vi ̸= 0 and uj ̸= 0///////////////////////////︸ ︷︷ ︸
if assume C irreducible

.
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Remark

The restricted form is the special case of the general form by
applying

P = I, Q =


1 0 · · · 0 1

0 1
. . . 0 1

... . . . . . . ... ...
0 0 · · · 1 1
0 0 · · · 0 1

 .

Many other cases should be continuously investigated.
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Thank you for your attention.
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