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Spectral radius

When Cis a real square matrix, the spectral radius p(C) is defined
as
p(C) :=max{ |A| | Ais an eigenvalue of C},

where || is the magnitude of complex number A.

When C is nonnegative, p(C) is known to be an eigenvalue of C.



A snapshot of our main method

The following is well known from the majorization-monotone
property of spectral radii of nonnegative matrices :

2 21 2 11 -
pl 0 32 |>p[0 3|1 |= <3 1):4
1 21 1 21

Our main result implies

2 21 2 112 -
pl 0 3[2 |>p|l 0 3|2 :p<3 1):2+¢7
1 21 1 21

(One column exception is allowed in majorization-monotone
property if the row-sums of two matrices are unchanged.)
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Dual result
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0. Introduction

1. The non-complete bipartite graph with e edges which has the

maximum spectral radius

2. The (non-complete) bipartite graph with e edges and bi-order

p, g which has the maximum spectral radius

3. Spectral bounds of a nonnegative matrix



Notations

Let G denote a graph with e = e(G) edges without isolated
vertices. Let A= A(G) be the adjacency matrix of G. The spectral
radius p(G) of G be the spectral radius of A.

Example



Spectral radii and graph invariants

Let G be a graph of order n and size e with diameter D, minimum
degree &, maximum degree A, average degree d, clique number w
and dominating number . The following are well-known in the
spectral graph theory.

» §<d<p(G) <A
> W2
> (n—1)p < p(G) < A—

» If Gis triangle-free, then p(G) < \/e



Brualdi-Hoffman Conjecture (1976)

Conjecture

If (g) <e< (d;rl), the graph with the maximum spectral radius
consists of the complete graph Ky to which a new vertex of degree
e— (g) is added, together with probably some isolated vertices.

Rowlinson proved this conjecture in 1988.



From now on, we assume G is bipartite with e edges.
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A. Bhattacharya, S. Friedland, and U.N. Peled show the following.
Theorem (BFP 2008)

p(G) < \/e(G)

with equality iff G is a complete bipartite graph with possible some
isolated vertices. O
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Kt

)

Define
K;,t = Ks,t — {ﬁ'},
K = Kae+{s(t+1)} (2<s<t).
Example:
1/
1
2/
2
3/
Kys = K3,
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Value of p(G) when e is fixed

Kis
I Ks,t
\/e+ 2—4(e—1—+/e 1) ’
0 2 e
G =Ky 0or G# K, K;'ft, Kst G= K;ft or K, except Ky
Moreover we find
e=st—1, s\, t 1 = p(Kse) /7
e=st+1, s\, t 1 = p(K&)

)
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Extremal graphs

Theorem
If G has maximum spectral radius among bipartite non-complete
graphs with e edges then

e (e—1,e+1) G
odd Kot
even (prime,not prime) K, with s > 2 the least
even (not prime,prime) K with s > 2 the least
(not prime,not prime) K, with s > 2 the least or
even . . SR
neither primes case K¢ with s > 2 the least
rime, prime .
even (p P ) unknown (no K% with s > 2)
twin primes case

O
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Numerical comparisons of the neither primes case
In the case that e < 100 is even and neither e— 1 nor e+ 1 is a
prime, we determine which G of K;t with s > 2 the least and K;t,
with & > 2 the least has larger eigenvalue, where

e=st—1=4dt+1.

e p(Kst) p(K% ) winner
26 | V13+3VIT | V13+149 | —
34 | V1T+265 | V1T+267 | +
50 | V/25++/593 | V/25+/583 | —
56 | /28 + /748 | /28 + /740 -
64 | V32+976 | V/32+082 | +
76 | /38 +/1384 | /38 4+ 1394 | +
86 | /43 + /1813 | V43 + V1781 | —
92 | /46 + /2096 | \/46 + /2078 | —
94 | /AT + /2137 | VAT +2147 | +
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A theorem for twin primes case

Let p(e) denote the maximum p(G) of a bipartite non-complete
graph G with e edges.

Theorem
If e> 4 then (e — 1,e+ 1) is a pair of twin primes if and only if

e+ \/62—4(e—1—\/e—1)
5 :

ple) <
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2. The (non-complete) bipartite graph with e edges and bi-order

p, g which has the maximum spectral radius

3. Spectral bounds of a nonnegative matrix
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IC<p7 q, e) and ICO(py q, e)

Definition

(i) K(p,q,e) is the family of subgraphs of K, ; with e edges
without isolated vertices which are not complete bipartite
graphs

(i) Ko(p, g, e) is the subset of K(p, g, ) such that each graph in
the subset is obtained from a complete bipartite graph by
adding one vertex and a corresponding number of edges.
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K:<3a47 5)' K0(3747 5) and p(G)

<XXZZ

V104217 V1042V13  v/10+2V5 2 ~ 1.8019
2 2 2

ST

\/6-5\/5
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BFP Conjecture for KC(p, g, €)
The following is a bipartite graphs analogue of Brualdi-Hoffman
conjecture proposed by Bhattacharya, Friedland and Peled.

BFP Conjecture for KC(p, g, €)
If G K(p,q,e) such that p(G) = maxpyex(p,q,e) P(H) and
Ko(p, q,€) # 0, then G € Ko(p, g, €).

Example

p=2,qg=4,e=5
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Some previous results

Theorem (Bhattacharya, Friedland and Peled 2008)

BFP Conjecture for K(p, q, €) holds for e = st — 1 for s, t satisfying
2<s<p<t<t+(t—1)/(s—1). O

Theorem (Liu and Weng, 2015)
BFP Conjecture for K(p, q, e) holds for e > pg — min(p, q). O

Remark
The is no proper complete bipartite subgraph of K 5 with
e > pq — min(p, q) edges.
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A slight improvement

Ifec{st—1,st+1|s<p,t<q}, then K;; € Ko(p,q;e) or
K;t € Ko(p, q,€). The following theorem is an immediate
consequence.

Theorem
BFP Conjecture for K(p, q, e) holds with

ec{st—1,st+1|s<p,t<q}.

22 /58



The graph Gp
For a sequence D of positive integers in nonincreasing order, one
can define the bipartite graph Gp with bipartition
X={xi,x2,.... %}, Y={y1,)2,...,Yd, } such that

E(Gp) = {xyjll <i<p1<j<di}.

Example

For D=(4,2,2,1,1) or D= (5,3,1,1), we have the isomorphic
graph Gp.

G2,2,1,1) = G5.3,1,1)
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Disproof of the BFP conjecture

Proposition
If g > p+2 > 5 then BFP Conjecture for K(p, q, p(q — 1)) is false.

Proof.

With sequences

Dl :(qaq_la"'vq_lvq_2)7
D2 :(qaqa"'aq’q_p)a

GD17 GDQ € K(pa q, p(q_ 1)) and ICO(pa g, p(q_ 1) = {GDQ}' By
direct computation, p(Gp,) < p(Gp,). O
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C(p,q,e)

From now on the complete bipartite graphs will be included in our
consideration.

Definition

(i) C(p,q, e) is the family of subgraphs of K, , with e edges
without isolated vertices.

(ii) Co(p, g, €) is the subset of C(p, g, €) such that each graph in
the subset is a complete bipartite graph or a graph obtained
from a complete bipartite graph by adding one vertex and a
corresponding number of edges.
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Weak BFP Conjecture

We propose the following conjecture.

Weak BFP Conjecture for C(p, g, €)
If G € C(p,q,e) such that p(G) = maxyec(p,q.e) P(H), then
Ge CO(p7 q, e)'
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e > pqg — max(p,q) or p <5

We have the following two theorems.

Theorem

If e > pg — max(p, q) then the weak BFP Conjecture for C(p, q, €)
is true. [
Theorem

If min(p, q) < 5 then the weak BFP conjecture for C(p, g, €) is
true. ]

The proofs of the above two Theorems employ some new sharp
upper bounds of the spectral radii of nonnegative matrices which
will be the last part of my talk.
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3. Spectral bounds of a nonnegative matrix
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Motivation

A bipartite graph G has adjacency matrix of the block form

A(G) = <E‘;T OB>

o_(BBT O
o BB)

Since BBT and B” B have the same spectral radius,

Then

p*(G) = p(BBT) = p(B"B).

Because BB is no longer a binary matrix, we need spectral theory
for general nonnegative matrices C.
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Motivation

Let C and C be two n x n nonnegative matrix. It is well-known as
a consequence of Perron-Frobenius Theorem that

C<C = p(O<p0)
Moreover if Cis irreducible then p(C) = p(C') if and only if
c=_"C.

We might expect to find another matrix C' such there are many C
related to C' in some way and p(C) < p(C'). Moreover we expect
the matrix C with p(C) = p(C) is not unique.
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Matrix notation

For a matrix M and a subset « of the set of row indices and a
subset (3 of the set of column indices, we use M[a|5] to denote the
submatrix of M which restricts the positions in a x (.

Example

— == O
o o

» MI{4}|[4]] = (1,1,0,0),

—__=_0 © O O
—_— oo = OO =

o O O

where [n] :={1,2,...,n}.

31/58



Rooted matrix

An m x n matrix C' = (c};) is rooted if

dyj>c, forl<i<mand1<j<n-1, and
n
/,-::Z i > /n Z for1 <i<m-—1.
j=1
Example
The matrix
6 6 —1
=182 0
5 2 0
T

with row-sum vector (7}, 7y, r5)T = (11,10,7) 7, which is a rooted

vector.
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p(C)

Remark
As a rooted matrix C is not always nonnegative, p(C) is not

necessary to be the largest real eigenvalue of C'. Let p,(C) denote
the largest real eigenvalue of C (lts existence is proved).
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A comment on rooted matrix

Remark

C is nonnegative = <i, 2) is rooted and p(C) = p (C O>

u a

for suitable chosen of row vector u > 0 and scalar a < 0 to have 0
row-sum in the last row.
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Construct C from C

From an n x n matrix C = (c;jj), we construct another n x n matrix
C = (cj) that satisfies
(i) Cllnllln = 1] < Cllnl{[n —1]J;
(i) i=>1 ¢ <rh:=>"1,¢ for 1 <i<n;
(iii) C + kl is rooted for some k
(iv) Cl{n}|[n—1]] > 0.
Example

Ut 00 W

S
O = N
~___—
a
1
PR
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A restricted form of our main method

Theorem
With the notation from the last page, we have

p(C) < pi().
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The set K

To study the case of equality p(C) = p(C) of the theorem in the
last page, we need information of the eigenvector
V= (V,V,,...,V,)T (known to be positive and rooted) of C for

p(C) and the set
K={jlv;>v,}.
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An easier way to find K

Let Ky ={i| /A >/,}, and when K; is defined, let

K1 ={i ¢ U Ks | ¢y > cp; for some j € U <, Ks}-

s<t

Lemma
Ift.>0for1 <i<n-—1 then

K =0, if Ki =0;
K=UZ, Ks otherwise.
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The equality part of the theorem

Theorem

With the notation in the last few pages, if C is irreducible and

r.>0 for1 <i<n-—1, then p(C) = p,(C) if and only if
ri=r, forl1<i<n

1

¢j=cj forl<i<nandjeK.

(cijis free if j & K.)
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A non-example holds

2 1 3|3 3|12 0 2 2 3|3 3|12 -1
4 2 1|4 2|6 4 4 2 1|4 2|6 5
2 3 1|4 18 3 2 3 2|4 218 3
pl 3 5 3|1 1|3 4 |<p]l 4 5 3|1 1|3 3
5 6 1|1 0|3 3 5 6 1|1 1|3 3
0 2 1|2 216 O 1 2 112 2|6 -1
2 2 02 1]1 4 2 2 02 2|1 4

Although the matrix on the right violates some pieces of the
assumptions in C, the above inequality still holds.
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The matrix C after equitable quotient matters
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Applications

In the following few pages, we shall provide some applications of
the inequality p(C) < p(C).

The matrices C attaining the equality can be characterized, but for
simplicity, we omit the discussion here.
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Realization a result of Xing Duan and Bo Zhou

Theorem

Let C = (cjj) be a nonnegative n x n matrix with row-sums
rn>ry>---2>r,and d:=max;cj, f:= max;,jcj. Then for
1<i<n,

_ftd—ft \/(fe —d+ 02+ 4F (i — )

p(C) < 5
Proof.
d f f n—(—2f—d
f d f n—(-2f-d
¢ = :
ff d rq1—(—2)f—d
fof foon—(-0f J,,
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A little generalization

Theorem

Let C = (cjj) be a nonnegative n x n matrix with row-sums

n 2 r 2 cee Z rn and d 2 maxlg,-gg,l Cii, fZ Inaxlg,'?gjgé,l C,'j.
Then for 1 < ¢ < n,

_ftd—ft \/(fe —d+ 02+ 4F (i — )

p(C) < 5
Proof.
d f f n—(—2f—d
f d f n—(-2f-d
¢ = :
ff d rq1—(—2)f—d
fof foon—(-0f J,,
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A theorem of Richard Stanley in 1987

Theorem

Let C = (cjj) be an n x n symmetric (0,1) matrix with zero trace.
Let the number of 1's of C be 2e. Then

-1+ 1+ 8e
p(C)ﬁf-
Proof.
Use 2e=>"", rp and
0 1 -+ 1 n—(n=-1)
1 0 1 n—(n-1)
C = :
1 1 0 m—(n—1)

—_
—
=
|
S
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A generalization to nonnegative matrices

Theorem
Let C= (cjj) be an n x n nonnegative matrix. Let m be the sum of
entries, and d > max; cj;, f > max;z;c;. Then

d—f++/(d—H2+4fm
Proof.
Use m=> " r=n(n—1)f+ nd and
d f -+ f n—d-(n-1)
f d o f rn—d-—(n—1f
o=l ;
f f d rm—d—(n—1f

-
-
-

—nf
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Realization a result of Csikvari in 2009

Theorem
Assume that the set {vi,va,..., vk} forms a clique in the graph G
and V(G)\ K= {Vk41,.-.,Vn} forms an independent set. Let € be

the number of edges between K and V(G) \ K. Then

A6 < k—1+/(k—1)2+4¢
< : .

Proof.
Use € = 3K, r; and
0 1 1 n—(k—1)
1 0 1 r—(k-1)
C =
11 0 re—(k—1)

—_
—
—_
)
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p(G) < p(Gpg))

To illustrate how our method is applied to bipartite graph, we need
the following theorem of A. Bhattacharya, S. Friedland, and U.N.
Peled in 2008.

Theorem

If a bipartite graph G has degree sequence D = D(G) of one part
then p(G) < p(Gp) with equality if and only if G= Gp (up to
isomorphism). O
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The spectral radius of Gp

The bipartite graph Gp has adjacency matrix of the block form

A(G) = <B(0 Bm)) Then A2 — <B<D>B(D>T 0 )

D)T 0 0] B(D)"B(D)
and
d dy ds dp
dy dy ds d,
C:=B(D)BD)T = | ds ds ds dp

dy dp dp dp
Since B(D)B(D)" and B(D)"B(D) have the same spectral radius,

P2(Gp) = p(A%) = p(O).

)
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A proof of the next theorem

For D = (di, db, ..., dp) in nonincreasing order,
di dy ds dp
dy dy s d,
C = d3 d3 d3 dp
d, dp dp dp
and fix 1 < ¢ < p, we will choose
d1 d1 d1 rl—(ﬁ—l)dl
d2 d2 d2 I’Q*(f*l)dg
c = d3 d3 d3 I’3—(£—1)d3
dg dg dg rg—(ﬁ—l)dg

where rj = (i— 1)d; + > }_. dk is the i-th row-sum of C to obtain
the theorem in the next page.
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A theorem for bipartite graphs

Theorem
Let G be a bipartite graph and D = (dy, da, ..., d,) be the degree
sequence of one part of G in decreasing order. Then for 1 < { < p,

A @2r - )2+ 4d S (- )
. .

p(G) <

The above theorem is the main tool for our proof of the weak BFP
Conjecture for C(p, g, e) with e > pg — max(p, g) or min(p, g) < 5.
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A new lower bound

Our method also has dual version.

Theorem

Let C = (cjj) be an n x n nonnegative matrix with row-sums
r>rp>--->r, Forl <t<n, letd=max¢i<pcj and
f=maxi<j<n t<j<n,izjCij. Assume that 0 < r, — (n—t—1)f—d.
Then

re—f+d+/(r—2n—2t—1)f—d)2+4(n—t)(fr,— (n—t—1)f—d)
2

is a lower bound of p(C).
Proof.

B re—(n—1t)f (n—1t)f
C= <rn—(n—t—1)f—d (n—t—l)f—i—d)'
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A general form of our main method

Theorem
Let C= (¢jj), C = (), P and Q be n x n matrices. Assume that

ij
(i) PCR< PCQ;

(i) C has an eigenvector Qu for X' for some nonnegative column

vector u = (uy, us,...,u,)" >0 and X € R;
(i) C has a left eigenvector v P for \ for some nonnegative row
vector vl = (v, va,...,v,) >0 and A € R; and

(iv) vIPQu > 0.
Then A < X'. Moreover, \ = X' if and only if

(PCQ); = (PCQ); for 1 < i,j < n with v; # 0 and uj # 0.

O
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Quick realization
To realize the theorem in the last page, we might investigate its
special case P= Q= 1.

Theorem
Let C= (cj), C = () be nx n matrices. Assume that
(i) c<C;

(i) C has an eigenvector u for X' for some nonnegative column

vector u = (uy, U, ...,u,)" >0 and X € R;

(iii) C has a left eigenvector v' for \ for some nonnegative row
vector v = (vi,v,...,v,) >0 and X\ € R; and

(iv) vlu>o0.

Then A < X'. Moreover, \ = X' if and only if

(T = (0); for 1 <i,j < n with v; # 0 and u; # 0.
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As simple as majorization-monotone property

Theorem

Let C=(cy), C = (cj) be nx n matrices. Assume that

(i) 0 <C<C;

(ii) E-has-an-eigenvectorutorN—forsomenonnegative-coturmn
= Ty n T = ! ,'

(iii) C-has-alefteigenvectorvlfor-)\for-some-nonnegativerow
T _ > .

(iv) viu>o0.

Then A\ < X'. Moreover, A\ = X if and only if

(C)y=(Qy  for L<ij<n withy7Wendmy 9.

if assume C irreducible
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Remark

The restricted form is the special case of the general form by
applying

1 0 0 1
0 1 01
PZ/? Q: . .
0 0 1 1
0 O 01

Many other cases should be continuously investigated.
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Thank you for your attention.



