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M.Tech and M.C.A students and also runs a Ph.D. program in which research is

going on in the areas: Graph Theory, Linear Algebra, Network on Chip (NoC),

Statistical Pattern Classifications, Six Sigma, Lie Algebra and Lie Groups, Fluid

Dynamics, Wavelet Transforms, Statistics, Finite Element Analysis, Fractal Theory
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THIS CONFERENCE

The conduct of India-Taiwan conferences in Discrete Mathematics is an offshoot

of the move originally mooted by Professor Xuding Zhu at the time of International

Conference on Discrete Mathematics held at I.I.Sc., Bangalore in 2006 (ICDM 2006)

and subsequently supported by Professor Gerard Jennhwa Chang and Ko-wei Lih.

The first India-Taiwan conference was held at the National Taiwan University,

Taipei, Taiwan, during November 9-12, 2009. 15 Indian and 38 Taiwanese discrete

mathematicians participated in this conference. The present conference is the second

one in the series.

In this conference, about 120 scholars, consisting of senior professors and other

researchers from both India and Taiwan are expected to participate. The main goal

of this conference is to generate joint projects by groups of the two countries by iden-

tifying common areas of research interest and problems in discrete mathematics.

(With inputs from K. Somasundaram and R. Balakrishnan)
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Circular colouring of graphs

Xuding Zhu xudingzhu@gmail.com

Zhejiang Normal University, China

Keywords: Circular chromatic number, circular perfect graphs, circular chromatic index

2000 MR Subject Classification: 05C15

A homomorphism from a graph G to a graph H is a mapping f : V (G)→ V (H) which
preserves edges, i.e., f(x)f(y) ∈ E(H) whenever xy ∈ E(G). A homomorphism from G
to Kn is equivalent to an n-colouring of G. The set of complete graphs {K1,K2,K3, . . . , }
form a chain in the homomorphism order of graphs. The chromatic number of G is defined
as �(G) = min{n : G admits a homomorphism to Kn}. We extend the chain of complete
graphs to a larger set {Kp/q : p ≥ 2q ≥ 2, (p, q) = 1}, where the graph Kp/q has vertices
{0, 1, . . . , p− 1} in which ij is an edge if and only if q ≤ ∣i− j∣ ≤ p− q. This set of graphs,
called circular complete graphs, form a chain with Kp/q admits a homomorphism to Kp′/q′

if and only if p/q ≤ p′/q′. This chain is used to define a refinement of chromatic number
of graphs – the circular chromatic number of graphs. The circular chromatic number of
a graph G is defined as �c(G) = min{p/q : G admits a homomorphism to Kp/q}. The
circular chromatic number of graphs has been studied extensively in the past twenty years.
It has become an important branch of chromatic graph theory with many deep results and
new techniques. The study of circular colouring of graphs stimulates challenging problems
and in many cases leads to better understanding of chromatic graph theory. In this talk I
will survey some results in this area, especially some very recent new results.
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Nowhere-zero constant sum flows

Tao-Ming Wang wang@go.thu.edu.tw

Department of Applied Mathematics, Tunghai University, Taichung Taiwan ROC 40704

Keywords: nowhere-zero flows, nowhere-zero k-flows, zero-sum flow, zero-sum k-
flow, constant-sum flow, constant-sum k-flow, index set, flow index.

AMS 2010 MR Subject Classification: 05C21, 05C15, 05C70, 05C78

1 Introduction to Zero-Sum Flows

Here a graph means a finite undirected graph with possibly multiple edges or loops
unless otherwise stated. We use ℤ to stand for the set of all integers, and ℤ∗ = ℤ−{0}
the set of all non-zero integers. Let G be a directed graph. A k-flow on G is an
assignment of integers with maximum absolute value k− 1 to each edge such that for
every vertex, the sum of the values of incoming edges is equal to the sum of the values
of outgoing edges. A nowhere-zero k-flow is a k-flow with no zero edge labels. A
celebrated conjecture of Tutte [6] says that every bridgeless graph has a nowhere-zero
5-flow. Jaeger [4] showed that every bridgeless graph has a nowhere-zero 8-flow. Next
Seymour [5] proved that every bridgeless graph has a nowhere-zero 6-flow.

One may consider the undirected graph analogue of nowhere-zero flows and it was
shown that both concepts are related. For an undirected graph G, a zero-sum flow
is an assignment of non-zero integers to the edges such that the sum of the values of
all edges incident with each vertex is zero. Moreover a zero-sum k-flow is a zero-
sum flow with edge labels ±1,±2, . . . ,±(k − 1). There is a conjecture for zero-sum
flows raised by S. Akbari et al. [1] in 2009, similar to the Tutte’s 5-flow Conjecture
for nowhere-zero flows as follows: If G is a graph with a zero-sum flow, then G admits
a zero-sum 6-flow. It was proved by Akbari et al. [2] that the above zero-sum 6-flow
conjecture is equivalent to the Bouchet’s 6-flow conjecture[3] for bi-directed graphs.
They also validated the zero-sum 6-flow conjecture for 2-edge connected bipartite
graphs, and every r-regular graph with r even, r > 2, or r = 3. Moreover they have
the following more detailed information for the zero-sum k-flows of regular graphs:
Let G be an r-regular graph (r ≥ 3), then G admits a zero-sum 7-flow, and if 3 ∣ r,
then G admits a zero-sum 5-flow.

2 Flow Indices and Constant-Sum Flows

We define the following notion which optimizes the choice of k one may have to
accomplish the zero-sum k-flow:
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Definition 1 For a graph G, we define the flow index F (G) as the minimum value
over all k such that G admits a zero-sum k-flow.

Therefore one may rephrase the zero-sum 6-flow conjecture as for any graph G,
F (G) ≤ 6. Note that calculating the flow index is more general and difficult than
finding the flows. On the other hand, we also extend the notion zero-sum flows(zero-
sum k-flows) to a more general one, namely constant-sum flows(constant-sum
k-flows) as follows:

Definition 2 For an undirected graph G, if there exists f : E(G)→ ℤ∗ such that the
sum of values of all incident edges with the vertex v is equal to C for each v ∈ V (G),
we call f a constant-sum flow of G, or simply a C-sum flow of G. We call such
constant C an index, and denote the set of all possible indices for G by I(G), which
is the index set of G. Moreover a constant-sum flow is called a constant-sum
k-flow if the absolute values of all assigned edge labels are less than k.

Among others we give infinite families of graph examples of small flow indices,
and we are able to determine completely the index sets of r-regular graphs for r ≥ 3,
also index sets of fans and wheels[7]. We find the minimum values of k for fans and
wheels admitting zero-sum k-flows, also justify the zero-sum 6-flow conjecture for fans
and wheels as a byproduct[8]. In fact one may extend the theory of zero-sum flows to
designs and even hypergraphs by studying the null spaces of corresponding incidence
matrices.

3 Summary of Recent Results

We list some of more recent results in the following :

Theorem 1 The index sets of r-regular graphs G of order n are

I(G) =

⎧
⎨
⎩

ℤ∗, r = 1.
ℤ, r = 2 and G contains even cycles only.
2ℤ∗, r = 2 and G contains an odd cycle.
2ℤ, r ≥ 3, r even and n odd .
ℤ, r ≥ 3, and n even .

Theorem 2 The index sets of fans Fn are as follows:

I(Fn) =

⎧
⎨
⎩
∅, n = 3.
2ℤ, n = 2k, k ≥ 2.
ℤ, n = 2k + 1, k ≥ 2.
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Theorem 3 The index sets of wheels Wn are as follows:

I(Wn) =

{
2ℤ, n = 2k, k ≥ 2.
ℤ, n = 2k + 1, k ≥ 1.

Theorem 4 The flow indices of fans and wheels are as follows:

F (Fn) =

{
3, n = 3k + 1, k ≥ 1.
4, otℎerwise.

F (Wn) =

⎧
⎨
⎩

3, n = 3k, k ≥ 1.
5, n = 5.
4, otℎerwise.
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3-Consecutive colorings of graphs

L. Pushpa Latha

Department of Mathematics, Yuvaraja’s College, Mysore 5700005

Classical theory of graph coloring began with the goal of minimizing the number

of colors. Recently there has been a spurt of research activity in the field, wherein

the number of colors is to be maximized under certain conditions. The present talk

is on such a topic which is currently receiving a lot of attention. Both the vertex and

edge versions of certain parameters are considered and their relations to various other

graph parameters are examined.

1 3-consecutive vertex colorings of graphs

Three vertices u, v and w in a graph G = (V, E) are consecutive if uv and vw are

edges in E. A 3-consecutive coloring of G is a coloring of the vertices of G such that

vertex v receives the color of either u or v. The 3-consecutive coloring number  3c(G)

of G is the maximum number of colors that can be used in such a coloring.

Some results:

1.  3c(G) = n if, and only if, each connected component of G is either K1 or K2.

2. If  3c(G) = 1, then every edge of G lies on a cycle.

3. If every edge of G lies in a triangle, then  3c(G) = 1.

4. Every maximal planar graph G has  3c(G) = 1.

2 3-consecutive edge coloring of a Graph

Three edges e1, e2 and e3 in a graph G are consecutive if they form a path or a cycle

of length 3. The 3-consecutive edge coloring of G is an assignment of colors to the

edges of G such that if e1, e2 and e3 are three consecutive edges in graph G, then e1

or e3 receives the color of e2. The 3-consecutive edge coloring number  ′3c(G) of G is

the maximum number of colors permitted in such a coloring.
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An equivalent definition is that a coloring of a graph is a 3-consecutive edge

coloring of G if at least one end of each edge is monochromatic, in the sense that all

edges incident at that vertex have the same color.

Some results:

1. For a graph G without isolated vertices, and for every integer k ≥ 2,  ′3c(G) ≥ k

if and only if G has a stable k-separator.

2. If u and v are two non-adjacent vertices in a graph G of order p ≥ 4, then

 ′3c(G)−  ′3c(G+ uv) ≤ p− 3, and the bound is tight for all p.

3. If G is a graph of order p, then  ′3c(G) ≤ p−i(G), where i(G) is the independent

domination number of G.

4. If G is a connected graph of order p and maximum degree Δ, then  ′3c(G) ≤
p− (p−1)

Δ
and this inequality holds for infinitely many p for every fixed Δ.

5. If G is a graph of order p and minimum degree �, then  ′3c(G) ≤ p− �, and the

bound is tight for all � ≤ p
2
.

6. If G is a bipartite graph with bipartition V = V1 ∪ V2, and G has no isolated

vertices, then max{∣V1∣, ∣V2∣} ≤  ′3c(G) ≤ �0(G).

7. For a graph G with q edges,  ′3c(G) = q if and only if each component of G is

a star or an isolated vertex.

3 1-open neighborhood edge coloring of a graph

The 1-open neighborhood edge coloring number  ′1n(G) of a graph G = (V,E) is the

maximum number of colors permitted in a coloring of the edges of G such that for

each edge e in G, at most one edge adjacent to e receives a color different from that

of e.

1. For a graph G,  ′1n(G) = q, the number of edges in G, if and only if, each

component of G is either K2 or K1,2.

2. If G is a connected graph such that degree of every vertex is either 1 or at least

3, then  ′1n(G) = 1.

3. For a connected graph G,  ′1n(G) = 1 if, and only if, G−M is connected, where

M is any maximum set of independent vertices of degree 2.
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4. If M is a maximum set of independent vertices if degree 2 in a graph G and

∣M ∣ = �02(G), then  ′1n(G) ≤ �02(G) + 1.

5. For a tree T,  ′1n(T ) = �02(T ) + 1.

Results on the above topics and related concepts have been published in various

journals. A few of them are mentioned here.
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Some notes on relations between coloring and
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This talk describes some connections between coloring and scheduling. A schedul-

ing of G is a mapping f : {1, 2, 3, ⋅ ⋅ ⋅ } → 2V (G), where f(i) consists of processes that

are operating at round i. The rate of f is defined as

rate(f) = lim sup
n→∞

n∑

i=1

∣f(i)∣/n∣V (G)∣,

which is the average fraction of operating processes at each round. The operating

rate of G is defined to be the maximum rate of a scheduling.

The first part of the talk considers fair, weakly fair and strongly fair schedulings of

graphs [15]. Scheduling is fair if adjacent vertices alternate their turns in operating.

Fair schedulings of a graph was first studied by Barbosa and Gafni [1, 2, 3, 4, 5].

They introduced the method of “scheduling by edge reversal” which derives a fair

scheduling through an acyclic orientation. Denote by 
∗(G) the maximum rate of a

fair scheduling of G. Through scheduling by edge reversal, Barbosa and Gafni related


∗(G) to the structure of acyclic orientations of G. We point out that this relation

implies that 
∗(G) is equal to the reciprocal of the circular chromatic number of G

[15]. We also prove that the rate of an optimal strongly fair scheduling of a graph

G is also equal to the reciprocal of the circular chromatic number of G, and the rate

of an optimal weakly fair scheduling of G is equal to the reciprocal of the fractional

chromatic number of G.

The second part of the talk considers circular chromatic number �c(G⃗, c) of a

digraph G⃗ equipped with an assignment c of positive weights on each arc. The

parameter �c(G⃗, c) was introduced in [9]. We show there is an unexpected connection

between �c(G⃗, c) and some sorts of schedules on (G⃗, c, T ) [17], where (G⃗, c, T ) (called

timed marked graph) is an edge-weighted digraph (G⃗, c) equipped with an assignment

T of nonnegative integer numbers of tokens on each arc.

The final part of this talk is going to generalize the following five theorems. No-

tation in the following theorems can be found in [7].
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Theorem 1 [8] (Minty’s Theorem) G is k-colorable if and only if G has an orienta-

tion ! such that

max
C∈ℳ(G)

∣C∣
∣C+

! ∣
≤ k.

Theorem 2 [14] (Tuza’s Theorem) Suppose k is an integer ≥ 2. Then G is k-

colorable if and only if G has an orientation ! such that

max
C∈T (G,k)

∣C∣
∣C+

! ∣
≤ k.

Theorem 3 [6] (Goddyn, Tarsi and Zhang’s Theorem) G is (k, d)-colorable if and

only if G has an orientation ! such that

max
C∈ℳ(G)

∣C∣
∣C+

! ∣
≤ k

d
.

Theorem 4 [19] (Zhu’s Theorem) G is (k, d)-colorable if and only if G has an ori-

entation ! such that

max
C∈Z(G,k,d)

∣C∣
∣C+

! ∣
≤ k

d
.

Theorem 5 [9] (Mohar’s Theorem) Let (G⃗, ℓ) be an edge-weighted symmetric digraph

with positive weights on the arcs. Suppose that r is a real number with r ≥ L(G⃗, ℓ).

Then (G⃗, ℓ) has a circular r-coloring if and only if G⃗ has a good initial marking T

such that

max
C⃗∈ℳ(G⃗)

∣C⃗∣ℓ
∣C⃗∣T

≤ r.
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An edge coloring of G is an assignment of colors to the edges of G. An edge coloring

is said to be proper if adjacent edges receive distinct colors. The least number of colors,

denoted �′(G), needed for a proper edge coloring of G is called the chromatic index

of G. A proper edge coloring of a graph is said to be acyclic if any cycle is colored

with at least three colors. The acyclic chromatic index, denoted a′(G), is the least

number of colors required for an acyclic edge coloring of G.

An edge-list L of a graph G is a mapping that assigns a finite set of positive

integers to each edge of G. An acyclic edge coloring � of G such that �(e) ∈ L(e)

for any e ∈ E(G) is called an acyclic L-edge coloring of G. A graph G is said to

be acyclically k-edge choosable if it has an acyclic L-edge coloring for any edge-list L

that satisfies ∣L(e)∣ ≥ k for each edge e. The acyclic list chromatic index, denoted

a′list(G), is the least integer k such that G is acyclically k-edge choosable. Obviously,

Δ(G) ⩽ �′(G) ⩽ a′(G) ⩽ a′list(G).

We initiated the study of the list version of acyclic edge coloring in [5]. Let

Δ(G) denote the maximum degree of a vertex in G. At the end of [5], the following

conjecture was proposed.

Conjecture 1 For any graph G, a′list(G) ⩽ Δ(G) + 2.

This is the list version of the following outstanding conjecture about acyclic edge

coloring independently given by Fiamč́ık [3] and Alon, Sudakov, and Zaks [1].

Conjecture 2 For any graph G, a′(G) ⩽ Δ(G) + 2.

The girth g(G) of a graph G is the length of a shortest cycle in G. In [2, 4, 6, 7],

upper bounds for the acyclic chromatic indexes of several classes of planar graphs with
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large girth were obtained and Conjecture 2 was proved to be true for these graphs.

We generalize these results to the acyclic list chromatic indexes of these graphs.

Theorem 3 Let G be a planar graph. If g(G) ⩾ 5, then a′list(G) ⩽ Δ(G) + 2.

Theorem 4 Let G be a planar graph. Suppose that any of the following conditions

holds.

1. g(G) ⩾ 6;

2. Δ(G) ⩾ 11 and g(G) ⩾ 5.

Then a′list(G) ⩽ Δ(G) + 1.

Theorem 5 Let G be a planar graph. Suppose that any of the following conditions

holds.

1. Δ(G) ⩾ 8 and g(G) ⩾ 7;

2. Δ(G) ⩾ 6 and g(G) ⩾ 8;

3. Δ(G) ⩾ 5 and g(G) ⩾ 9;

4. Δ(G) ⩾ 4 and g(G) ⩾ 10;

5. Δ(G) ⩾ 3 and g(G) ⩾ 14.

Then a′list(G) = Δ(G).

Obviously, Conjecture 1 is true for these graphs.
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A k-edge weighting of a graph G is a mapping w : E(G) → {1, 2, . . . , k}. An

edge weighting w induces a vertex coloring fw : V (G) → ℕ defined by fw(v) =∑
e∈E(v)w(e), where E(v) is the set of edges of G incident to v. We say the edge

weighting is proper if fw(u) ∕= fw(v) for any edge uv. Edge weighting of graphs was

introduced by Karoński, L̷uczak and Thomason in 2004 [5]. They posed the following

conjecture which is referred as the 1, 2, 3-conjecture:

Conjecture 1 Every graph without isolated edges has a proper edge weighting w such

that w(e) ∈ {1, 2, 3} for every edge e.

The conjecture received a lot of attention and edge weighting of graphs has been

studied in [1, 2, 4, 5, 6, 7]. The best result concerning 1, 2, 3-conjecture is obtained

by M. Kalkowski, M. Karoński and F. Pfender in [6] recently. They proved that

every graph without isolated edges has a proper edge weighting w such that w(e) ∈
{1, 2, 3, 4, 5} for every edge e.

In 2008, T. Bartnicki, J. Grytczuk and S. Niwczyk [3] considered the list version

of this problem. Suppose each edge e of G is assigned a set L(e) of real weights. The

graph G is weight L-colorable if there is a proper edge weighting w : E → ∪e∈E(G)L(e)

such that for each edge e, w(e) ∈ L(e). A graph is k-edge weight choosable if it is

weight L-colorable for any list assignment L for which ∣L(e)∣ = k. They posed the

following conjecture:

Conjecture 2 Every graph without isolated edges is 3-edge weight choosable.

Conjecture 2 is verified for several classes of graphs, including complete graphs, com-

plete bipartite graphs and some other graphs. However it is unknown if there is a

constant C such that every connected graph G ∕= K2 is C-edge-weight-choosable.
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Suppose G = (V,E) is a graph. A mapping w : V ∪ E → ℝ is called a proper

total weighting of G if the vertex-colouring fw of G induced by w defined as

fw(x) =
∑

e∈E(x)

w(e) + w(x)

is a proper colouring of G, i.e., for any two adjacent vertices x and x′, fw(x) ∕= fw(x′).

Przybyl̷o and Woźniak [8, 9] considered total weighting of graphs. They posed the

following conjecture and named it the 1, 2-conjecture in [8]:

Conjecture 3 Every simple graph G has a proper total weighting w such that w(y) ∈
{1, 2} for all y ∈ V ∪ E.

They verified this conjecture for some special graphs, including complete graphs,

4-regular graphs and graphs G with �(G) ≤ 3. They also proved that every simple

graph G has a proper total-weighting w such that w(y) ∈ {1, 2, . . . , 11} for all y ∈
V ∪ E. This result was improved in [6] where it was shown w can be chosen so that

w(v) ∈ {1, 2} for every vertex v and w(e) ∈ {1, 2, 3} for every edge e.

Wong and Zhu [11] considered the list version of this problem. A total list assign-

ment of G is a mapping L : V ∪E → P(ℝ) which assigns to each element y ∈ V ∪E
a set L(y) of real numbers as permissible weights. Given a total list assignment L, a

proper total weighting w is called a proper L-total weighting if for each y ∈ V ∪ E,

w(y) ∈ L(y). Given a pair (k, k′) of positive integers, a total list assignment L is called

a (k, k′)-total list assignment if ∣L(x)∣ = k for each vertex x ∈ V and ∣L(e)∣ = k′ for

each edge e ∈ E. We say G is (k, k′)-total weight choosable ((k, k′)-choosable, for

short) if for any (k, k′)-total list assignment L, G has a proper L-total-weighting. It

is known [11] that a graph is (k, 1)-choosable if and only if it is k-choosable. On the

other hand, if G is (1, k′)-choosable, then it is certainly k′-edge-weight-choosable. So

the concept of (k, k′)-choosable builds a bridge between the concept of conventional

choosability of graphs and edge-weight-choosability of graphs, and can be viewed

as a generalization of both choosability and edge-weight-choosability. The following

conjectures were proposed in [11]:

Conjecture 4 Every graph is (2, 2)-choosable.

Conjecture 5 Every graph with no isolated edges is (1, 3)-choosable.

However, it is still unknown if there are constants k, k′ such that every graph

is (k, k′)-choosable. It was shown in [11] that complete graphs, trees, cycles, gen-

eralized theta graphs are (2, 2)-choosable, and complete bipartite graphs K2,n are
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(1, 2)-choosable and K3,n are (2, 2)-choosable. In [10], it is proved that complete mul-

tipartite graphs of the form Kn,m,1,1,...,1 are (2, 2)-choosable and complete bipartite

graphs other than K2 are (1, 2)-choosable.

In this talk, we shall give some sufficient conditions for a bipartite graph to be

(1, 3)-choosable. An orientation of a bipartite graph with partite sets A and B is

balanced if each vertex in A is either a source or a sink and each vertex in B has

in-degree equals out-degree. It is proved that a bipartite graph which has a balanced

orientation is (1, 3)-choosable. As a consequence, hypercubes of even dimension are

(1, 3)-choosable.
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Given a vertex v and a k-tuple of vertices (v1, v2, . . . , vk), the code of v is determined
using the distance of v from the vertices v1, v2, . . . , vk [1] and in the case of neighbourhood
resolvability adjacency or otherwise of a vertex v with the vertices v1, v2, . . . , vk is used [10].
Eventhough the codes are used to distinguish the vertices, the elements of the codes are
either the distances or 0 and 1. One may be interested in using different types of codes. An
answer to this question is attempted through a new concept called �-resolvability.

Definition. 1 Let G be a simple graph. Let � = (�1, �2, . . . , �r, . . .) be a sequence of positive
reals. Let S = {u1, u2, . . . , ur} be a subset of V (G). Let x ∈ V (G). The �-code of x with
respect to k-tuple (u1, u2, . . . , ur), denoted by (x/S)�, is defined as (x/S)� = (a1, a2, . . . , ar)
where

aj =

{
1
�i
, if d(uj , x) = i > 0, 1 ≤ j ≤ r

0, if d(uj , x) = 0
.

S is a �-resolving set of G if (x/S)� ∕= (y/S)�, whenever x, y ∈ V (G), x ∕= y. The minimum
cardinality of a �-resolving set of G is called �-dimension of G and is denoted by dim�(G).

Definition. 2 Let G be a simple graph. Let S = {u1, u2, . . . , ur} be a subset of V (G). Let
x ∈ V (G). Let k be a positive integer.
The �( 1

k
)- code of x with respect to S, denoted by (x/S)�

( 1
k
)
, is defined as (x/S)�

( 1
k
)

=

(a1, a2, . . . , ar) where aj =

{
1
i , if d(uj , x) = i ≤ k
0, if d(uj , x) > k , 1 ≤ j ≤ r

,

when x /∈ S. If x ∈ S and x = ui, then (ui/S)� 1
k

= (a1, a2, . . . , ar) where

aj =

{
1
l , if d(uj , ui) = l ≤ k
0, if d(uj , ui) = l > k

, if j ∕= i and a− i = 0.

S is a �( 1
k
)-resolving set of G if (x/S)�

( 1
k
)
∕= (y/S)�

( 1
k
)

whenever x ∕= y, x, y ∈ V (G).

The minimum cardinality of a �( 1
k
)-dimension of G is denoted by dim�

( 1
k
)
.

Remark. 1 The value of the code of (x/S) at the itℎ place is denoted by (x/S)(i).

Remark. 2 If �i = 1
i for every i, then aj = i = d(uj , x) and resolving sets are obtained.

Remark. 3 If k = 1, then neighbourhood resolving sets are obtained.
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Example. 1 Consider P6 with V (P6) = {v1, v2, v3, v4, v5, v6}.
Let S = {v1, v4}. Now (v1/S)�

( 13 )
= (0, 13); (v2/S)�( 13 )

= (1, 12);

(v3/S)�
( 13 )

= (12 , 1); (v4/S)�( 13 )
= (13 , 0); (v5/S)�( 13 )

= (0, 1) and (v6/S)�
( 13 )

= (0, 12). There-

fore S is a �( 1
3
)-resolving set of P6.

Since (v1/S)�
( 12 )

= (v4/S)�
( 12 )

= (0, 0), S is not a �( 1
2
)-resolving set of P6.

Consider S = {v2, v3}. Now (v1/S)�
( 13 )

= (1, 12); (v2/S)�( 13 )
= (0, 1);

(v3/S)�
( 13 )

= (1, 0); (v4/S)�
( 13 )

= (12 , 1); (v5/S)�( 13 )
= (13 ,

1
2) and (v6/S)�

( 13 )
= (0, 13).

Similarly, (v1/S)�
( 12 )

= (1, 12); (v2/S)�( 12 )
= (0, 1);

(v3/S)�
( 12 )

= (1, 0); (v4/S)�
( 12 )

= (12 , 1); (v5/S)�( 12 )
= (0, 12) and (v6/S)�

( 12 )
= (0, 0). There-

fore S is both �( 1
3
) and �( 1

2
)-resolving sets of P6.

Theorem. 1 For any graph G, every neighbourhood resolving set of G is a �( 1
2
)-resolving

set of G.

Remark. 4 The converse of theorem 1 is not true.
Consider the following graph G.

s s

s

s s

sss

s

1 2

34

5

G :

6

79 8

Let S = {1, 2, 3}.
(1/S)�

( 12 )
= (0, 1, 1); (2/S)�

( 12 )
= (1, 0, 1);

(3/S)�
( 12 )

= (1, 1, 0); (4/S)�
( 12 )

= (1, 1, 1);

(5/S)�
( 12 )

= (1, 12 ,
1
2); (6/S)�( 12 )

= (12 , 1,
1
2);

(7/S)�
( 12 )

= (12 ,
1
2 , 1); (8/S)�

( 12 )
= (12 ,

1
2 ,

1
2); and (9/S)�

( 12 )
= (0, 0, 0). Therefore S is a

�( 1
2
)-resolving set of G.

Since ncS(8) = ncS(9) = (0, 0, 0), S is not a �( 1
1
)-resolving set of G.

Remark. 5 For any connected graph G, dim�
( 12 )

(G) ≤ nr(G).

Theorem. 2 Let G be a simple graph. Let G ∕= Kn. Then
dim�

( 12 )
(G) ≤ n− 2.
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A vertex-deleted subgraph (or card) G− v of a graph G is the unlabeled subgraph

obtained from G by deleting v and all edges incident with v. The collection of all

cards of G is called the deck of G. A graph H is called a reconstruction of G if H

has the same deck as G. A graph is said to be reconstructible if it is isomorphic to all

its reconstructions. A family F of graphs is recognizable if, for each G ∈ F , every

reconstruction of G is also in F , and weakly reconstructible if, for each graph G ∈ F ,

all reconstructions of G that are in F are isomorphic to G. A family F of graphs

is reconstructible if, for any graph G ∈ F , G is reconstructible (i.e. if F is both

recognizable and weakly reconstructible).

The Reconstruction Conjecture [9] (RC) asserts that all graphs on at least three

vertices are reconstructible. Kelly [3] first proved the RC for disconnected graphs

and trees. Several other classes of graphs are already proved to be reconstructible in

the hope that one day enough classes to include all graphs would come into the fold.

[1],[5], [4], and [6] are some surveys of workdone on RC and related problems.

Yang Yongzhi [10] proved the following reduction for RC in 1988.

Reduction 1. RC is true if and only if all 2-connected graphs are reconstructible.

”RC for digraphs” is already disproved. So a proof for RC, if any will depend

on some property for graphs which does not extend to digraphs. One such property

which arises out of distance in complement is given by the following theorems.

Theorem 1. A graph G is reconstructible if and only if G is reconstructible.

Theorem 2. If diam(G) > 3, then diam(G) < 3.

Theorem 3. If rad(G) ≥ 3, then rad(G) ≤ 2.

The following reduction was proved by S. K. Gupta et al. [2] in 2003 using The-

orems 1 and 2.

Reduction 2. RC is true if and only if all graphs G with diam(G) = 2 and all graphs

G with diam(G) = diam(G) = 3 are weakly reconstructible.

Using Reductions 1 and 2, Ramachandran and Monikandan [7] have proved Re-

ductions 3 and 4.

Reduction 3. RC is true if and only if all 2-connected graphs G having a vertex v lying

on more than one induced P4 such that diam(G) = 2 or diam(G) = diam(G) = 3 are

reconstructible.
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Reduction 4. RC is true if and only if all 2-connected graphs G having a vertex v

lying on more than one induced P4 such that rad(G) = 2 are reconstructible.

For any two vertices u and v in G, the set I(u, v) = {w ∈ V (G) : w lies on a

shortest u − v path} is the interval in G between u and v. A connected graph G

is interval-regular if ∣I(u, v) ∩ N(u)∣ = dG(u, v) for all u, v ∈ V (G). Graph in which

every pair of vertices have unique shortest path is a geodetic graph. We have shown [8]

that geodetic graphs of diameter two and interval-regular graphs are reconstructible

and proved that all graphs are reconstructible if and only if all non-geodetic and

non-interval-regular blocks G with diam(G) = 2 or diam(G) = diam(G) = 3 are

reconstructible. In this talk, we discuss about the above reductions of RC.
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Consider an edge coloring c : E(G) → N , (not necessarily proper) of a graph G.

A rainbow path between two vertices is a path such that no two edges in the path

have the same colour. The colouring c is called a rainbow (edge) colouring of G if

there is a rainbow path between every pair of vertices in G with respect to c. The

rainbow connection number rc(G) of a graph G, is the minimum number of colours

required in a rainbow coloring of G. For example the rc(Kn) = 1, for the complete

graph Kn on n vertices, rc(T ) = n− 1 for a tree T on n vertices. Note that rc(G) is

defined only when G is connected.

The concept of rainbow colouring was introduced by Chartrand, Johns, McKeon

and Zhang in 2008 [2]. Chakraborty et al. showed that computing the rainbow

connection number of a graph is NP-Hard [3]. To rainbow colour a graph, it is enough

to ensure that every edge of some spanning tree in the graph gets a distinct colour.

Hence order of the graph minus one is an upper bound for rainbow connection number.

Many authors view rainbow connectivity as one ‘quantifiable’ way of strengthening

the connectivity property of a graph [4, 3, 5].

The following are some of the known results about rainbow colouring from litera-

ture:

1. Let G be a graph of order n. If G is 2-edge-connected (bridgeless), then rc(G) ≤
4n/5− 1.

2. If G is 2-vertex-connected, then rc(G) ≤ min{2n/3, n/2 +O(
√
n)} [4].

3. For a graph G of minimum degree �, rc(G) ≤ 20n/�, [5].

In this talk, we will discuss about two recent results regarding rainbow connection

number, from our research group.

1. In [7] we show that for every bridgeless graph G with radius r, rc(G) ≤ r(r+2).

This bound is the best possible for rc(G) as a function of r, not just for bridgeless

graphs, but also for graphs of any stronger connectivity. It may be noted that,
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for a general 1-connected graph G, rc(G) can be arbitrarily larger than its

radius (K1,n for instance). We further show that for every bridgeless graph G

with radius r and chordality (size of a largest induced cycle) k, rc(G) ≤ rk.

Hitherto, the only reported upper bound on the rainbow connection number of

bridgeless graphs is 4n/5− 1, where n is order of the graph.

2. In [6] we show that for every connected graph G, with minimum degree at least

2, the rainbow connection number is upper bounded by 
c(G) + 2, where 
c(G)

is the connected domination number of G. Bounds of the form diameter(G) ≤
rc(G) ≤ diameter(G) + c, 1 ≤ c ≤ 4, for many special graph classes follow as

easy corollaries from this result. This includes interval graphs, AT-free graphs,

circular arc graphs, threshold graphs, and chain graphs all with minimum degree

at least 2 and connected. In most of these cases, we also demonstrate the

tightness of the bounds. An extension of this idea to two-step dominating sets

is used to show that for every connected graph on n vertices with minimum

degree �, the rainbow connection number is upper bounded by 3n/(� + 1) + 3.

This improves the previously best known bound of 20n/� [5]. Moreover, this

bound is seen to be tight up to additive factors by a construction mentioned in

[4].
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1 INTRODUCTION

The concept of graceful labeling of an undirected graph [7] was extended to a digraph
by Bloom and Hsu [1] as follows:

Definition 1.1 A digraph D with p vertices and q arcs is labeled by assigning a
distinct integer value g(v) from {0, 1, ..., q} to each vertex v. The vertex values, in
turn, induce a value g(u, v) on each arc (u, v) where g(u, v) = (g(v)−g(u))(mod q+1).
If the arc values are all distinct then the labeling is called a graceful labeling of a
digraph.

Bloom and Hsu [1] established some connections between graceful digraphs and
latin squares, Abelian groups, Galois field, and neofields. Also they defined a complete
mapping and showed necessary and sufficient conditions for a union of unicycles to
be graceful in terms of complete mapping.
In the year 1994, Du and Sun [2] proposed a conjecture as:

Conjecture 1.2 For any positive even n and any integer m, the digraph n.
−→
Cm is

graceful.

Here n.
−→
Cm denotes the digraph obtained from n copies of the directed cycle

−→
Cm which

has one common vertex.

Definition 1.3 n − −→Cm denotes the digraph having n copies of the unidirectional

cycles
−→
Cm with one common arc.

Xirong Xu, Jirimutu [8] proved that, the digraph n−−→Cm is graceful for n even and
m = 4, 6, 8, 10.

Lingqi Zhao, Jirimutu [9] proved that, the digraph n−−→Cm is graceful for n even and
m = 5, 7, 9, 11, 13. Also they conjectured that:

Conjecture 1.4 For any even n and any m ≥ 14, the digraph n−−→Cm is graceful.

1The work reported in this paper is a part of the work done under the project No.SR/S4/MS-
425/2007 funded by the Department of Science and Technology (DST) Government of India for
which we are thankful.
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Bloom and Hsu [1] mentioned that “for n ≤ 11, all unicyclic wheels
−→
Wn are known

to be graceful except for n = 6 and n = 10. Can graceful labelings for these be found?
And more generally, will the results for unicyclic wheels be as straight forward as for
undirected wheels, i.e., is the following conjecture true?”.

Conjecture 1.5 All unicyclic wheels are graceful.

In this talk, we present the proof of Conjectures 1.2, 1.4 and 1.5.

Lemma 1.6 Let D be a graceful digraph with p vertices and q arcs. Suppose that,−→
Cn be a unidirectional cycle contained in the digraph D. Then the sum of the labels

on the arcs of unidirectional cycle
−→
Cn is congruent to zero (mod q + 1).

Lemma 1.7 The unidirectional cycle
−→
Cn is graceful if and only if the sum of the

elements 1, 2, ..., n is congruent to zero (mod n+ 1) and there exists an arrangement
of these elements in a circular way with the sum of m(m < n) consecutive elements
is not congruent to zero (mod n+ 1).

Theorem 1.8 In a unidirectional cycle
−→
Cn (n is even), if the orientation of the arcs

of any path is reversed, then the resulting directed cycle is not graceful.

Definition 1.9 The digraph D is said to be conservative, if indegree and outdegree
of all vertices are the same.

Theorem 1.10 If a conservative digraph D is graceful then number of arcs in D is
even.

2 RESULTS

2.1 GRACEFULNESS OF THE DIGRAPH n.
−→
Cm

Theorem 2.1 [3] Suppose n is odd and k ∣ (n− 1), where k > 1. Then the nonzero
residues (mod n + 1) can be partitioned into (n − 1)/k sets of cardinality k, so that
the sum of the elements of each set is ≡ 0(mod n).

Theorem 2.2 The digraph n.
−→
Cm is graceful if and only if nm is even.

2.2 GRACEFULNESS OF THE DIGRAPH n − −→Cm FOR n

EVEN.

We use the following lemmas for proving Conjecture 1.4.

Lemma 2.3 For any even m and even n, the elements of the set S = {1, 2, ..., r −
1, r + 1, ..., (m − 1)n + 1}, where r = (m−1)n+2

2
can be partitioned into n disjoint

subsets of cardinality (m− 1), so that the sum of the elements of each subset is equal

to 2mn(m−1)+2m+n−2
2

.
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Lemma 2.4 Let S = {1, 2, ..., r − 1, r + 1, ..., (m − 1)n + 1}, where m is odd, n is

even and r = (m−1)n+2
2

. Then S can be partitioned into n disjoint subsets each of
cardinality (m− 1), in such a way that:
(a) The sum of the elements of each of n

2
subsets is equal to m2n−3mn+2m+2n−4

2
.

(b) The sum of the elements in each of the remaining n
2

subsets is equal to
m2n−mn+2m

2
.

Lemma 2.5 Corresponding to the matrix B, we can construct a new matrix C = [cij],
having the following properties:
(i) The last column in C, remains the same as that of B.
(ii) For any row i in C, (ci1, ci2, ..., ci(m−1)) is just a rearrangement of

(bi1, bi2, ..., bi(m−1)). This arrangement satisfies the following property:
j′∑
l=j

bil ∕≡ 0(mod (m− 1)n+ 2) for all {(j, j′) : 1 ≤ j < m,

j < j′ ≤ m and (j, j′) ∕= (1,m)}.
(iii) For any two rows i and i′ in C,

m∑
l=j

bil +
r∑

t=1

bi′t ∕≡ 0(mod (m− 1)n+ 2)

for 1 < j ≤ m, 1 ≤ r < m− 1.

2.3 GRACEFUL LABELINGS OF UNICYCLIC WHEELS

Proposition 2.6 If an outspoken unicyclic wheel
−→
Wn is graceful, then the

sum of the labels of the spokes are congruent to zero (mod 2n+ 1).

Theorem 2.7 All unicyclic wheels
−→
Wn are graceful.
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Let the Euclidean plane, also called the plane, be divided into unit squares, that is,

the four corners of a square have coordinates (x, y), (x+ 1, y), (x, y+ 1), (x+ 1, y+ 1)

for some integers x and y. And for each unit square, we use the coordinate of its

lower left corner to label itself. Clearly, unit square (x, y) and unit square (x′, y′)

share a side if either ∣x′ − x∣ = 1 and y′ = y or x′ = x and ∣y′ − y∣ = 1 holds.

Moreover, a finite and nonempty set of unit squares, denoted by U , is called connected

if, for any two unit squares (x, y) and (x′, y′) in U , there exists a sequence (x, y) =

(x1, y1), (x2, y2), . . . , (xk−1, yk−1), (xk, yk) = (x′, y′) such that (i) unit square (xi, yi)

belongs to U for 1 ≤ i ≤ k and (ii) unit square (xi, yi) and unit square (xi+1, yi+1)

share a side for 1 ≤ i ≤ k − 1.

A polyomino is defined as a finite, nonempty, and connected set of unit squares.

And a configuration generalizes the notion of polyomino by dropping the requirement

“being connected”. Hence, a polyomino is a connected configuration and a configura-

tion is either a polyomino or a union of polyominoes. Polyominoes are the sources of

many combinatorial problems and have fostered significant research in mathematics.

Let ℤ denote the set of all integers and ℤn denote the set {0, 1, 2, . . . , n − 1} for

some positive integer n. A polyomino P or a configuration C is said to tessellate

the plane if the plane is consisting of the images of P or C under the translations of

vectors in portions of ℤ×ℤ that do not overlap except along their sides. We also say

that there exists a tessellation of the plane using a polyomino P or a configuration

C if P or C tessellates the plane. Actually, there does exist several methods for

determining whether a polyomino or a configuration tessellates the plane. Three of

those methods are introduced as follows:

First, for an positive integer N , an N-skewing scheme is defined as a 2-dimension

function S such that S(i, j) = k, where (i, j) ∈ ℤ× ℤ and k ∈ ℤN . Moreover, a data

template T is a set of ordered pairs of nonnegative integers in which no two components

are identical. And an instance of a data template T through a vector v = (vx, vy) in

ℤ×ℤ is a set of ordered pairs of integers which formed by componentwise addition of
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(vx, vy) to T . Then an N -skewing scheme S is valid for a data template T , if and only

if, for any two ordered pairs (i1, j1) and (i2, j2) satisfying S(i1, j1) = S(i2, j2), there

exists no instance of T which contains both (i1, j1) and (i2, j2) as components. Besides,

for each data template T , there exists uniquely a polyomino or a configuration which is

corresponding to T . In 1978, Shapiro [3] proved that there is a validN -skewing scheme

for a data template T if and only if the polyomino or the configuration corresponding

to T tessellates the plane.

Second, two polyominoes P and Q in the plane are called simply neighboring if

they have a nonempty intersection with empty interior and such an intersection is

also a connected set. Moreover, let P0, P1, . . . , Pk−1 denote the images of a polyomino

P under the translations of vectors v0, v1, . . . , vk−1 in ℤ × ℤ, respectively. Then

a surrounding of a polyomino P is a sequence P0, P1, . . . , Pk−1 such that, for i =

0, 1, . . . , k − 1, P and Pi are simply neighboring, as also are Pi and Pi+1 (indices are

defined modulo k), and the union of P, P0, P1, . . . , Pk−1 form a polyomino which does

not have internal holes. In 1991, Beauquier and Nivat [1] showed that the plane can

be tessellated by a polyomino P if and only if there exists a surrounding of P .

Third, a polyomino P or a configuration C of N unit squares has a 2-linear labeling

if we can label the unit squares of P or C by using the elements of ℤf ×ℤN/f exactly

once for some f ≥ 1 and f ∣N , such that the labels of unit squares in each row is an

arithmetic sequence with skip parameter A = (a1, a2) and the labels of unit squares

in each column is an arithmetic sequence with skip parameter B = (b1, b2), where

A,B ∈ ℤf × ℤN/f and A = B is allowed. In 2006, Chen, Hwang, and Yen [2] proved

that a polyomino P tessellates the plane if and only if P has a 2-linear labeling.

In this talk, we will study some problems derived from these methods mentioned

above for determining tessellating polyominoes.
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A wireless ad hoc network (or simply a wireless network) consists of a set of nodes that
communicate with each other without any physical infrastructure or centralized adminis-
tration. The interference problem between nodes in a wireless network is important and
difficult and it can be modeled using graph theoretic techniques, in particular, the theory
associated with Unit Disc Graphs (UDGs). As we will see below, the chromatic number of
a UDG model of a wireless network is directly related to the interference problem.

The chromatic number is a graph invariant. The clique number is another graph in-
variant and is closely related to the chromatic number. It is obvious that for any graph G,
the chromatic number is always lower bounded by the clique number, i.e., �(G) ≥ !(G).
For the special case of “perfect graphs”, the chromatic number and the clique number have
equal values in every induced subgraph. It is well known that the graph coloring problem is
NP-complete and that even the problem of approximating the chromatic number within any
constant ratio is NP-hard [5]. In [2], Clark et al. proved that the coloring problem remains
NP-complete for UDGs. In fact, Clark et al. proved that the problem of determining, given
a UDG G, whether G is 3-colorable is NP-complete. In [1], Breu and Kirkpatrick have provn
that the problem of determining, given a graph G, whether G is a UDG is NP-hard. In [4],
Graf et al. improved the result of Clark et al. by showing that the problem of determining,
given a UDG G and a fixed integer k, whether G is k-colorable remains NP-complete for
any fixed k ≥ 3; they also proposed a 3-approximation algorithm for the coloring problem.

The transmission range (TR) of a given node is defined as the maximum distance at
which the nodes transmission can be successfully received, and all nodes that lie within the
transmission range of a given node are called its communicating neighbors. The interference
range (IR) is defined as the maximum distance at which a given node’s transmission can
interfere with or corrupt a simultaneous transmission or reception attempt by another node,
and all nodes that lie within interference range of a given node are called its interfering
neighbors. Clearly, all communicating neighbors are interfering neighbors and vise versa.

Recently, in [6], Mani and Petr treated the case in which IR is the same for all nodes. The
graph model is a UDG and is called an interference graph. In such a graph, if two nodes share
an edge, then they are mutually interfering and hence cannot transmit simultaneously in the
same timeslot. There are two possible scenarios: balanced load scenario and unbalanced
load scenario. In the balanced load scenario, each node require the identical number of
transmission timeslots per second to suit their traffic requirements; as a result, the chromatic
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number gives the minimum number of timeslots per second. However, a balanced load
scenario rarely occurs in the real world. In [6], Mani and Petr considered the unbalanced
load scenario, wherein the traffic rates of each node need not be identical.

For most classes of graphs, computing �(G) and !(G) are both NP-complete. But
for UDGs, while computing �(G) is still NP-complete, computing !(G) can be done in
polynomial time. This raises the question: How close is !(G) to �(G)? For general graphs,
�(G)/!(G) can be very large. In [7], Peeters has observed that �(G) ≤ 3!(G) − 2 if G
is a UDG. In [6], Mani and Petr performed extensive simulations with UDGs of random
networks and observed that in a UDG G, the clique number !(G) and the chromatic number
�(G) were typically very close to one another. To evaluate the closeness of �(G) and !(G),
Mani and Petr used the measure “imperfection ratio”

imp(G) = sup
R

�(G′)
!(G′)

of a transformed weighted graph G′, defined as the supremum of the ratio of its chromatic
number to its clique number. Here the supremum is computed over all possible weight
vectors R.

It has been proven that the theoretical bound of imp(G) is 2.155 and imp(G) = 1 if and
only if G is perfect [3]. Based on the simulation results, Mani and Petr [6] concluded that a
practical bound for UDGs is imp(G) ≤ 1.2079, which is far less than the conjectured upper
bound of 1.5 or the theoretic upper bound of 2.155. The purpose of this paper is to show
that there exist UDGs such that imp(G) > 1.2079. In particular, we show that: if G is an
odd cycle of length ≥ 5 or the Harary graph H2m,3m+2 where m is odd, then imp(G) = 1.5;
if G is the wheel W6, then imp(G) = 4/3.
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We consider the problem of finding two bottleneck shortest paths in a weighted
graph. The two paths need not be disjoint; they can share vertices and edges. The
algorithm is useful in routing messages in a wireless sensor network, which consists
of spatially distributed autonomous sensors to monitor physical or environmental
conditions, such as temperature, sound, vibration, pressure, motion or pollutants.
Each sensor usually has only limited resources. Therefore, it is important to minimize
the resources required at each sensor in the transmission of the data collected at that
sensor. In this talk, I will define the problem of transmitting message in the network.
I will present algorithms for solving the case in which only one pair of sensors need
to communicate. I will also list the problems which we have proved to be NP-hard.
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For two vertices u and v in a connected graph G = (V,E), the distance d(u, v)

is the length of a shortest u − v path in G. A u − v path of length d(u, v) is called

a u − v geodesic. A subset S of vertices is a geodetic set of G if every vertex of

G lies on a geodesic joining a pair of vertices in S. The minimum cardinality of a

geodetic set of G is the geodetic number g(G) of G. A geodetic set of cardinality

g(G) is called a g-set of G. Some general properties of geodetic sets are studied and

the geodetic numbers of certain classes of graphs are determined. Graphs of order p

for which g(G) = 2, p − 1 or p are characterized. Bounds for the geodetic number

of a graph G are obtained and realization results are proved. A geodetic set S of G

is a minimal geodetic set if no proper subset of S is a geodetic set of G. The upper

geodetic number g+(G) of G is the maximum cardinality of a minimal geodetic set

of G. Results regarding the geodetic and upper geodetic numbers of a graph are

investigated
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A house is a graph which is obtained by attaching two edges to two vertices of

a triangle. In what follows we will denote the house by (a, b, c; d, e) or (a, c, b; e, d)

if the triangle is (a, b, c) and two edges are bd and ce. A house-design of a graph G

is an ordered pair (X,A), where X is the vertex set of G and A is an edge-disjoint

decomposition of G into copies of houses. A house-design of order n is a house-design

of Kn. A partial house-design of order n is a house-design of a subgraph of Kn.

Following the design terminology, we call these copies blocks.

A house-design of order n exists precisely when n ≡ 0, 1 (mod 5) [6]. In this paper, we

are interested in the embedding problem for house-designs. A (partial) house-design

(X1,A1) is said to be embedded in a house-design (X2,A2) if X1 ⊂ X2 and A1 ⊂ A2.

In 1973, Doyen and Wilson [5] set the standard for embedding problems by proving

the following result: Let m,n ≡ 1 or 3 (mod 6). Any STS(m) can be embedded in a

STS(n) if n ≥ 2m+ 1. This lower bound on n is the best possible.

Over the years, any problem involving trying to prove a similar result for a given

combinatorial structure has come to be called Doyen-Wilson problem. Recently, some

papers investigated Doyen-Wilson theorems for special blocks. Huang and Yang [11]

considered this problem for extended directed triple systems; Castellana and Raines

[4] for extended Mendelsohn triple systems; Lo Faro and Tripodi [12] for kite systems;

Wang and Shen [14] for nested Steiner triple systems; Hoffman and Kirkpatrick [10] for

kite-designs; Raines [13] for extended triple systems of all indices; Fu and Lindner [7]

for maximum packings of Kn with 4-cycles; Fu, Lindner and Rodger [8] for maximum

packings with triples; Fu, Lindner and Rodger [9] for minimum coverings with triples;

Bryant and Rodger [2] for 5-cycle systems; Bryant and Rodger [3] for m-cycle systems.

The focus of this paper is to produce Doyen-Wilson theorem for house-designs.
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Abstract

Signed graph S is an ordered triple (V,E, �) where G = (V,E) is a graph,
called its underlying graph, and � is a function, called a signing of G, that as-
signs a weight (sign) +1 (‘plus’) or -1 (‘minus’) to each edge of G. An element
of S is either an element of V , called a vertex of S (or of G), or an element of
E, called an edge of S. Hence, a labeling of S is a function ℓ : V ∪E →W that
assigns to each element of S an element of the chosen universe of discourse W
such as a subset of real numbers or a family of subsets of a nonempty ground
set X. The main aim of this paper is to creatively review the existing literature
on various notions of labeling the elements of a signed graph (digraph) and
identify some important research problems for further work.

1 Introduction

For all terminology and notation in graph theory (digraph theory), we refer the reader

to Harary [8] (Harary et al. [7]). Accordingly, unless mentioned otherwise, all graphs

(digraphs) treated in this article are simple, self-loop-free and finite.

In this article, we shall go one step further and indicate studies on different ways

to ‘label’ a given signed graph (digraph) S = (V,E, �). Mainly we cover the following

themes. (i) Marking theme (ii) Coloring theme (iii) Graceful theme.

2 Marking theme

Marking of a given signed graph (digraph) S = (V,E, �) is a function � : V (S) →
{−1,+1}; essentially, it is a labeliing of the vertices of S using the labels from the
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group M = {−1,+1}. Given �, we write S� to indicate that S is given together

with one of its markings �, whence we call S� a marked signed graph; in particular,

if G = (V,E) is a graph (digraph) it may be treated as a marked graph (digraph)

in which all the marks are positive and hence it may be denoted as G� if required,

where �(u) = +1, ∀ u ∈ V (G), whence G� will be called a marked graph. Formally, a

signed graph (digraph) S is balanced if every cycle (semicycle) in S contains an even

number of negative edges (arcs).

Theorem 2.1 A signed graph S = (V,E, �) is balanced if and only if it admits a

marking � such that

�(uv) = �(u)�(v) ∀ uv ∈ E. (1)

Theorem 2.2 A signed graph S = (V,E, �) is clusterable if and only if no cycle in

S has exactly one negative edge.

Definition 2.1 A signed graph S = (V,E, �) is consistent if it admits a marking �

such that every positive cycle in S contains an even number of negative vertices in �;

in other words

∏

e∈E(Z)

�(e) = + =
∏

v∈V (Z)

�(v) for every positive cycle Z in S.

2.1 Canonical markings

Given any signed graph S = (V,E, �), its canonical marking �� is uniquely defined

as given by ��(u) =
∏

uv∈Eu
�(uv) ∀u ∈ V , where Eu denotes the set of edges that

contain u and is called the edge neighborhood of u (see [2, 5]).

3 Coloring theme

Definition 3.1 For any positive integer k, a proper k-coloring of a signed graph

S = (V,E, �) is an assignment of integers from the set {0,±1,±2, . . . ,±k} to the

vertices of S such that end vertices of every positive edge of S receive different numbers

and end vertices of any negative edge in S do not receive two numbers in the set that

are negatives of each other; S is k-colorable if it admits a proper k-coloring.

In general, an r-semiclustering of a signed graph S is a partition � of V (S) into r

subsets such that the induced subgraph of no subset contains a negative edge; we shall

call these subsets nonnegative sets in S. Further, a signed graph is r-semiclusterable
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if it admits an r-semiclustering. Thus, if S has a proper k-coloring then it is (2k+1)-

semiclusterable. A proper k-coloring of S is said to be 0-free if 0 (zero) does not

appear as one of the colors on the vertices of S [14]. In particular, a 0-free 1-coloring

of a signed graph S induces a 2-semiclustering of S; a signed graph S in general is

said to be semibalanced if it admits a 2-semiclustering (see [3]). The following is now

fairly evident.

Proposition 1 If S admits a 0-free 1-coloring then S is semibalanced, but not con-

versely.

Like semibalanced signed graphs have a simple characterization (see [3]), one

would now look for a characterization of 0-free 1-colorable signed graphs; the following

is still a straightforward characterization of such signed graphs, where a signed graph

is called antibalanced whenever its negation is balanced.

Theorem 3.1 [11] A signed graph S is 0-free 1-colorable if and only if S is an-

tibalanced.

Remark 3.1 In fact, in general, the induced subgraph on the +i- or −i-colored

vertices in any proper k-colored signed graph S is always an all-negative subgraph of

S.

Remark 3.2 [11] If we allow 0 in a proper 1-coloring of a signed graph S, then

the answer is: There is a stable (independent) vertex set whose deletion leaves an

antibalanced signed graph. For integers k ≥ 2 such a characterization seems to get

complicated.

The least positive integer k for which a signed graph S admits a proper (0-free)

k-coloring is called the (zero-free) chromatic number of S, denoted �(S) (respectively,

�∗(S)). Clearly, for any signed graph S, �(S) ≤ �∗(S). In fact, as conveyed by

Zaslavsky [12], we know that

�(S) = �∗(S) or �(S) = �∗(S)− 1. (3)

Nothing else is known about these parameters, aside from a few specific examples.

Hence, it would be interesting to solve

Problem 1: Determine signed graphs S for which equalities in (3) hold.

Further, there is an open problem to extend the notion of proper colorings of a signed

graph to the realm of signed digraphs. One can possibly take the recent approach

based on a method suggested by Sampathkumar [6].
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4 Graceful theme

Here, in this section, we shall deal with vertex labelings that induce edge labelings,

so that one need not separately label the edges. Such labeling schemes in general

have been found to be useful in optimizing the size of the sets of symbols required for

encoding the graph; the purpose of this section is to creatively review such schemes

developed recently for signed graphs (digraphs). It is too unwieldy to cite here refer-

ences to literature as they are too numerous for graphs (e.g., see [9]); however, since

they are widely known we choose to ignore such citations as far as possible.

4.1 Graceful signed digraphs

Let S = (G, �) be any signed graph with E+(S) as its set of positive edges and E−(S)

as its set of negative edges; if, in particular, if G is a (p, q)-graph, ∣E+(S)∣ = m and

∣E−(S)∣ = n, then ∣E(S)∣ = m + n = q. Given positive integers d and k, S is (d, k)-

graceful (see [4, 10]) if the vertices of S can be labeled with distinct integers from the

set {0, 1, 2, . . . , k+(q−1)d} such that when each edge uv of S is assigned the product of

its sign and the absolute difference of the integers assigned to u and v the values of the

edges of E+(S) and E−(S) form the sets of integers {k, k+d, k+2d, . . . , k+(m−1)d}
and {−k,−(k + d),−(k + 2d), . . . ,−(k + (n − 1)d)}, respectively; such a labeling is

called a (d, k)-graceful numbering of S and S is said to be a (d, k)-graceful signed graph

if it admits a (d, k)-graceful numbering. (It is not difficult to see generalizations of

these notions to the class of infinite signed graphs.) In particular, a (1, 1)-graceful

signed graph is called a graceful signed graph and a (1, 1)-graceful numbering of S is

called a graceful numbering of S. Clearly, when a graph is regarded as an all-positive

signed graph, the notions of a (d, k)-graceful numbering and that of a (d, k)-graceful

signed graph reduce respectively to those of a (d, k)-graceful numbering and that of a

(d, k)-graceful graph [1].

For graceful signed graphs and consistency in signed graphs the reader is referred

to [13] and [5] respectively.

References

[1] B.D. Acharya, On d-sequential graphs, J. Math. Phys. Sci., 17(1983), 21-35.

[2] B.D. Acharya, Psycho-balance in signed hypergraphs, Proc. Jubilee International

Conference on Discrete Mathematics held in Banasthali University (Rajasthan,

India) during Jan. 8-11, 2006. (To be published by Elsevier.)



40 2nd Indo-Taiwan Conference in Discrete Mathematics, Sep 8-11, 2011, Amrita, India

[3] B.D. Acharya and S. Joshi, Semibalance in signed digraphs, Proc. International

Conf. on New Directions of Rresearch in Cybernetics and Systems (Jan. 1-3,

2004), Institute of Advanced Study in Science and Technology, Guwahati.

[4] B.D. Acharya, An extension of Katai-Iwai procedure to derive balancing and min-

imum balancing sets of a social system, Ind. J. Pure & Appl. Math., 17(7)(1986),

875-882.

[5] D. Sinha, New frontiers in the theory of signed graphs, Ph.D. Thesis,

Faculty of Technology, University of Delhi, 2005.

[6] E. Sampathkumar, Personal conversation/communication, April, 2011.

[7] F. Harary, R.Z. Norman and D. Cartwright, Structural Models: An Intro-

duction to the Theory of Directed Graphs, Wiley, New York, 1965.

[8] F. Harary, Graph Theory, Addison-Wesley Publ. Comp., Reading, Mas-

sachusettes, 1969.

[9] J.A. Gallian, A Dynamic Survey of Graph Labelings, Electronic J. Com-

bina., 15(2008), DS6.

[10] M. Acharya and T. Singh, Graceful signed graphs, Czech. Math. J., 54(129)

(2004), 291-302.

[11] T. Zaslavsky, Email conversation with B.D. Acharya, July 2011.

[12] T. Zaslavsky, Email communication to B.D. Acharya, June 2011.

[13] T. Singh, New directions in the theory of signed graphs, Ph.D. Thesis,

Faculty of Technology, University of Delhi, 2003.

[14] T. Zaslavsky, How colorful the signed graph?, Discrete Mathematics, 52(1984),

279-284.



2nd Indo-Taiwan Conference in Discrete Mathematics, Sep 8-11, 2011, Amrita, India 41

Tree path labeling of path hypergraphs:
A generalization of consecutive ones property

N.S. Narayanaswamy1 swamy@cse.iitm.ernet.in

Anju Srinivasan∗1 asz@cse.iitm.ac.in

1Indian Institute of Technology Madras, Chennai

Keywords: Consecutive ones property, Hypergraph isomorphism, Interval labeling,

Interval graphs, Path graphs

2000 MR Subject Classification: [05C85] Graph algorithms, [68R10] Graph the-

ory, [68W40] Analysis of algorithms

We consider the following constraint satisfaction problem. Given (i) a set system

ℱ ⊆ (powerset(U) ∖ Ø) of a finite set U of cardinality n, (ii) a tree T of size n and

(iii) a bijection l , defined as tree path labeling, mapping the sets in ℱ to paths in

T , does there exist at least one bijection � : U → V (T ) such that for each S ∈ ℱ ,

{�(x) ∣ x ∈ S} = l (S)? A tree path labeling of a set system is called feasible if there

exists such a bijection �. In this paper, we characterize feasible tree path labeling

of a given set system to a tree. This result is a natural generalization of results on

matrices with the Consecutive Ones Property. Moreover, we pose some interesting

algorithmic questions which extend from this work.

Consecutive ones property (COP) of binary matrices is its property of rearrangment

rows (columns) in such a way that every column (row) has its 1s occuring consec-

utively. The problem of COP testing is also a constraint satisfaction problem of a

set system as follows. In a binary matrix, if every column is represented as a set

of indices of the rows with 1s in that column, then if the matrix has the COP, a

reordering of its rows will result in sets that are intervals. The COP is equivalent

to the problem of finding interval assignments to a given set system [3] with a single

permutation of the universe which permutes each set to its interval. Clearly COP is

a special instance of tree path labeling problem described above when T is a path.

The result in [3] characterize interval assignments to the sets which can be obtained

from a single permutation of the rows - the cardinality of the interval assigned to it

must be same as the cardinality of the set, and the intersection cardinality of any

two sets must be same as the interesction cardinality of the corresponding intervals

- Intersection Cardinality Preserving Interval Assignment (ICPIA). This is obviously

necessary and was discovered to be sufficient.

We focus on the question of generalizing the notion of an ICPIA [3] to characterize

feasible path assignments. We show that for a given set system ℱ , a tree T , and
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an assignment of paths from T to the sets, there is a bijection � between U and

V (T ) if and only if all intersection cardinalities among any three sets (not necessarily

distinct) is same as the intersection cardinality of the paths assigned to them and the

input successfully executes our filtering algorithm (described in this paper) without

prematurely exiting. Aside from finding the bijection � mentioned above for a given

path labeling, we also present a characterization of set systems which have a feasible

tree path labeling on a given tree T and present an algorithm to find a path labeling

if it exists when T is a k-subdivided star. A k-subdivided star is a star with all its

rays subdivided exactly k times. The path from the center to a leaf is called a ray

of a k-subdivided star and they are all of length k + 2. A star graph is a complete

bipartite graph K1,l which is clearly a tree and l is the number of leaves. The vertex

with maximum degree is called the center of the star and the edges are called rays of

the star.

The following questions are extensions to this work.

1. The intersection graph of a set system with a feasible tree path labeling from

a tree T must be a path graph which is a subclass of chordal graphs. This

can be checked efficiently because path graph recognition is polynomial time

solvable[1, 4]. However, this is only a necessary condition. It is possible to have

a pair of set system and tree (ℱ , T ), such that the intersection graph of ℱ is

a path graph, but there is no feasible tree path labeling to T . Therefore, the

following questions.

(a) What is the maximal set system ℱ ′ ⊆ ℱ such that (ℱ ′, T ) has a feasible

tree path labeling?

(b) What is the maximal subtree T ′ ⊆ T such that (ℱ , T ) has a feasible tree

path labeling?

(c) Path graph isomorphism is known be isomorphism-complete[2]. An inter-

esting area of research would be to see what this result tells us about the

complexity of the tree path labeling problem.

2. A set system ℱ can be alternatively represented by a hypergraph ℋℱ whose

vertex set is supp(ℱ) and hyperedges are the sets in ℱ . This is a known repre-

sentation for interval systems in literature [2]. We extend this definition here to

path systems. Two hypergraphs ℋ, K are said to be isomorphic to each other,

denoted by ℋ ∼= K, iff there exists a bijection � : supp(ℋ)→ supp(K) such that

for all sets H ⊆ supp(ℋ), H is a hyperedge in ℋ iff K is a hyperedge in K where

K = {�(x) ∣ x ∈ H}. If ℋℱ ∼= ℋP where P is a path system, then ℋℱ is called

a path hypergraph and P is called path representation of ℋℱ . If isomorphism

is � : supp(ℋℱ) → supp(ℋP), then it is clear that there is an induced path
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labeling l� : ℱ → P to the set system. So our problem of finding if a given path

labeling is a feasible path labeling is a path hypergraph isomorphism problem.
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The purpose of this talk is to report recent results on rank, nullity, maximum

nullity and minimum rank of graphs by Liang-Hao Huang, Hong-Gwa Yeh and myself.

The first part of this talk is on rank and nullity. The rank r(G) (resp. nullity

�(G)) of a graph G the rank (resp. the number of zero eigenvalues) of its adjacency

matrix A(G). These two concepts are equivalent in the sense that r(G) + �(G) = n

for a graph G of n vertices.

The nullity of a molecular graph G has a number of important applications in

physical chemistry. In quantum mechanics, Hückel theory [16] (for the molecule

corresponding to molecular graph G) says that the eigenvectors of the adjacency

matrix A(G) are identical to the Hückel molecular orbitals, and the eigenvalues of

A(G) are the energies corresponding to the Hückel molecular orbitals. The number

of nonbonding molecular orbitals (NBMOs) is identical with the multiplicity of the

eigenvalue zero in the spectrum of A(G). If �(G) > 0, then the molecule corresponding

to G have NBMOs in the Hückel spectrum, and such molecule should have open-shell

ground states and be very reactive. This implies molecular instability.

There are two things concerned by people in this direction. The first one is to

compute the rank using the structure of the graph. The second is to determine the

structure of an n-vertex connected graph with a fixed rank k.

In 2001, Sillke [20] conjectured that the rank of a cograph (P4-free graph) is equal

to the number of distinct non-zero rows of its adjacency matrix. This conjecture is

a by-product of Sillke’s approach to Rank-coloring Conjecture [2]. After two years

Royle [19] proved this conjecture. We [3] answered a question in [19] by giving an

elementary and short proof of this rank property of cographs.

While determining the structure of an n-vertex graph G with r(G) = k is well

answered for k ≤ 3, the question has not yet been fully answered for k = 4, 5 in

the literature. Only partial results were known (see [13, 17, 10, 18, 21, 11]). We

completely resolve this recently [4, 5].
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The second part of this talk is on maximum nullity and minimum rank. Given a

graphG on n vertices and a field F , the maximum nullity MF (G) (resp. minimum rank

mrF (G)) of G over F is the largest possible nullity (resp. smallest possible rank) over

all n×n symmetric matrices over F whose (i, j)th entry (for i ∕= j) is nonzero whenever

ij is an edge in G and is zero otherwise. Again, these two parameters determine each

other as mrF (G) + MF (G) = n. The maximum nullity problem of a graph G is

to determine MF (G). This problem has close relation with the inverse eigenvalue

problem. The problem and its variations have received considerable attention over

the years (see [9, 12] and references therein).

In 2008, the AIM group [1] introduced a new concept called the zero forcing

number Z(G) of a graph as a useful upper bound of MF (G). For a vertex subset

S ⊆ V (G) of an n-vertex graph G, let S0 = S and Si+1 = Si∪{y : {y} = N(x)∖Si for

some x ∈ Si} for i ≥ 0. It is clear that Si = Sn for all i ≥ n. A zero-forcing set of G is

a subset S ⊆ V (G) for which Sn = V (G). The zero-forcing number Z(G) of G is the

minimum size of a zero-forcing set. The authors in [1] showed that MF (G) ≤ Z(G)

for any graph G and any field F . They posted an attractive question: What is the

class of graphs G for which Z(G) = MF (G) for some field F? We partially answer

this question [14, 15] with results improving several results in [1, 8].
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Abstract

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} . The distance
matrix D = D(G) of G is defined so that its (i, j)-entry is equal to dG(vi, vj) , the
distance between the vertices vi and vj of G .The eigenvalues of the D(G) are said to
be the D-eigenvalues of G and form the D-spectrum of G , denoted by specD(G) .

In this talk we present some of the recent results in the distance spectra of graphs.

1 Introduction

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , . . . , vp} and size (= number

of edges ) q . The distance matrix D = D(G) of G is defined so that its (i, j)− entry is

equal to dG(vi, vj) , the distance (= length of the shortest path [1]) between the vertices vi

and vj of G. The eigenvalues of D(G) are said to be the D− eigenvalues of G and form the

D− spectrum of G , denoted by specD(G).

The ordinary graph spectrum is formed by the eigenvalues of the adjacency matrix [2].

In what follows we denote the ordinary eigenvalues of the graph G by �i, i = 1, 2, . . . , p ,

and the respective spectrum by spec(G) .

Since the distance matrix is symmetric, all its eigenvalues �i, i = 1, 2, . . . , p , are real

and can be labelled so that �1 ≥ �2 ≥ . . . . . . ≥ �p .

2 Some recent results in the theory of distance spectra of
graphs

Theorem 1 For i = 1, 2, let Gi be an ri-regular graph with ni vertices and eigenvalues of

the adjacency matrix AGi, �i,1 = ri ≥ �i,2 ≥ �i,2 ≥ ⋅ ⋅ ⋅ ≥ �i,ni. The distance spectrum

of G1∇G2 consists of eigenvalues −�i,j − 2 for i = 1, 2 and j = 2, 3, . . . , ni and two more

eigenvalues of the form

n1 + n2 − 2− r1 + r2
2

±
√(

n1 − n2 −
r1 − r2

2

)2

+ n1n2. (1)
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Theorem 2 For i = 0, 1, 2, let Gi be an ri-regular graph with ni vertices and eigenvalues

�i,1 = ri ≥ �i,2 ≥ �i,2 ≥ ⋅ ⋅ ⋅ ≥ �i,ni of the adjacency matrix AGi. If r1 ∕= r2, then the

distance spectrum of G0∇(G1 ∪ G2) consists of eigenvalues −�i,j − 2 for i = 0, 1, 2 and

j = 2, 3, . . . , ni and three more eigenvalues which are solutions of the cubic equation in �:

(2n0 − r0 − 2− �)(� + r1 + 2)(� + r2 + 2)

+[2(� + r0 + 2)− 3n0][n1(� + r2 + 2) + n2(� + r1 + 2)] = 0. (2)

Theorem 3 Let G and H be two distance regular graphs on p and n vertices with dis-

tance regularity k and t respectively. Let specD(G) = {k, �2, �3, ....., �p} and specD(H) =

{t, �2, �3, ....., �n}. Then

specD(G+H) = {nk + pt, n�i, p�j , 0}

i = 2, ..., p , j = 2, ..., n and 0 is with multiplicity (p− 1)(n− 1).

Theorem 4 Let G be a graph with D− matrix DG and H , an r− regular graph with an

adjacency matrix A. Let specD(G) = {�1, �2, ......, �p} and the ordinary spectrum of H be

{r, �2, �3, ......, �n}. Then

specDG[H] =

(
n�i + 2n− r − 2 − (�j + 2)

1 p

)
, i = 1 to p and j = 2 to n− 1

Definition 1 [3] Given two graphs G with vertex set {v1, v2, ......., vp} and H , the corona

of G and H is denoted by G ∘ H and is defined as the graph obtained by taking p copies

of H and for each i , joining the ith vertex of G to all the vertices in the ith copy of H ,

i = 1, 2, . . . . . . , p.

Definition 2 [3] Let H be a rooted graph rooted at u. Then given a graph G with vertex

set {v1, v2, ......., vp} , the cluster G{H} is defined as the graph obtained by taking p copies

of H and for each i , joining the ith vertex of G to the root in the ith copy of H .

Theorem 5 Let G be a distance regular graph on p vertices {v1, v2, ......, vp} with distance

regularity k, a distance matrix D and specD = {k = �1, �2, ........., �p}. Let H be an r−
regular graph on n vertices with an adjacency matrix A and specA = {r = �1, �2, ......, �n}.
Then the distance spectrum of G ∘H consists of the following numbers:

(a)
n (2p+ k) + k − r − 2±

√
(n (2p+ k) + k − r − 2)2 + 4 (np2 + k (r + 2))

2
each with mul-

tiplicity 1

(b)
�i (n+ 1)− r − 2±

√
(�i (n+ 1)− r − 2)2 + 4�i (r + 2)

2
for each �i ∈ specD , i = 2, 3, ......, p



2nd Indo-Taiwan Conference in Discrete Mathematics, Sep 8-11, 2011, Amrita, India 49

(c) −�i − 2 with multiplicity p for each �i ∈ specA(H) , i = 2, 3, ......, n.

Theorem 6 Let G be a distance regular graph with distance regularity k ,a distance matrix

D and distance spectrum {k = �1, �2, ..., �p}. Then the distance spectrum of G{Kn} consists

of the numbers −1 of multiplicity (n− 2)p ,the roots of the equation

p∏

i=2

[
x3 − (n (�i − 3) + �i)x

2 − 2n (2�i − 1)x− 2n�i
]

= 0

together with the three roots of

x3−(n (k − 3) + p (4n− 2) + k)x2−
(
p2 (5n− 4) + 2n (p+ 2k − 1)

)
x−p2 (3n− 2)−2nk = 0

(3)

3 New graphs from old and their distance spectra

In this section we obtain the distance spectrum of the following graphs.

1. Median and total graph of a cycle.

2. The complement of the subdivision graph of a regular graph G.

3. The subdivision graph of Kn.

4. The graph obtained by subdividing the edges of a Hamiltonian cycle in Kn
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For a (simple) graph G, let rank(G) and dnzr(G) denote respectively the rank and

the number of distinct nonzero rows of the adjacency matrix A(G) of G. It is proved

that for any graph G, with no isolated vertices, rank(G) = dnzr(G) if and only if

the adjacency matrix A(G) of G does not contain a nonzero null vector x with the

property that xu = xv whenever u, v are vertices of G that have the same neighbors in

G. Based on the latter result (and its equivalent formulation in terms of the reduced

adjacency matrix of G) and by considering the question of when two vertex-disjoint

graphs G1, G2 satisfy rank(G1 ∨ G2) = dnzr(G1 ∨ G2), we provide an alternative

proof for the known result that every cograph G satisfies rank(G) = dnzr(G). We

provide evidences which support the conjecture that for any graph G with nonsingular

adjacency matrix, the sum of the entries of A(G)−1 is greater than 1. If the conjecture

is true, then it can be shown that the class of graphs G that satisfy rank(G) = dnzr(G)

is closed under taking join.

It is clear that in general rank(G) ≤ dnzr(G). While experimenting on the rank-

chromatic number question by computer, Torsten Sillke [8] observed that for all the

cographs he checked, the rank is equal to the number of distinct non-zero rows of

the adjacency matrix, and he conjectured that all cographs have this maximal rank

property. In [7] Royle provided an inductive proof for the conjecture, which is based

on the fact that every cograph can be constructed from smaller cographs by taking

(disjoint) union and join, starting from trivial (single-vertex) graphs. His proof begins

by examining the behavior of the characteristic polynomial when the operation of

union or join is applied to two cographs. He raised the question of whether there

are other natural classes of graphs for which this rank property holds. In [2] Chang,

Huang and Yeh gave another proof for the conjecture, in the slightly more general

setting of vertex-weighted cographs, i.e., cographs for which each vertex is assigned
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a weight from [0, 1), the adjacency matrix being the same as that of the underlying

graph, except that now the diagonal entries are equal to the vertex weights of the

corresponding vertices instead of equal to 0. Their proof employs elementary row

and column operations and relies on the fact that every nontrivial cograph has two

vertices which are (true or false) twins, i.e., distinct vertices with identical open or

closed neighborhoods. In [1] Türker Biyikoǧlu has provided yet another proof for the

conjecture, using cotrees and threshold graphs as tools.

In this talk I provide the fourth proof for Sillke’s conjecture. Like Royle, our

approach is by induction and still based on the fact that every cograph can be con-

structed from smaller cographs by taking union and join. Instead of working with the

characteristic polynomial of the adjacency matrix, we essentially use the eigenspace

method (more in the spirit of the book [5]). We examine the general question of when

two graphs G1, G2, not necessarily cographs, satisfy rank(G1∨G2) = dnzr(G1∨G2)).

We need the concept of reduced adjacency matrix of a graph, which we introduce

below. For more details, see [4].

For a graph G, by the neighborhood equivalence relation on G we mean the equiva-

lence relation ∼G on V (G) given by: u ∼G v if and only if NG(u)∖{v} = NG(v)∖{u}.
The equivalence classes for ∼G are called the neighborhood equivalence classes of G.

We use t(G) to denote the number of neighborhood equivalence classes of G. For

a graph G with neighborhood equivalence classes of cardinality n1, . . . , nt(G) respec-

tively, we use z(G) to denote (n1, n2, . . . , nt(G))
T , the neighborhood class cardinalities

vector of G. By the reduced adjacency matrix of G we mean the t(G) × t(G) matrix

B(G) = [bij] given by:

bij =

⎧
⎨
⎩

(ni − 1) if i = j, Vi is a clique
0 if i = j, Vi is a stable set
nj if i ∕= j, there are edges between Vi and Vj
0 if i ∕= j, there are no edges between Vi and Vj

.

Theorem 1. For a graph G with no isolated vertices, the following conditions

are equivalent :

(a) rank(G) = dnzr(G).

(b) B(G) is nonsingular.

(c) A(G) does not contain a nonzero null vector x with the property that xu = xv
whenever u, v are vertices of G that have the same neighbors in G.

We use e(n) to denote the vector of all 1’s in ℝn.

Theorem 2. For a graph G, the following conditions are equivalent :
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(a) N (B(G)) ∩ (span{z(G)})⊥ = {0}.

(b) N (B(G)T ) ∩ (span{e(t(G)})⊥ = {0}.

(c) Either B(G) is nonsingular, or rank(B(G)) = t(G)− 1 and e(t) /∈ ℛ(B(G)).

(d) Either rank(G) = dnzr(G) or rank(G) = dnzr(G)− 1 and e(n) /∈ ℛ(A(G)).

Lemma 1. Let G1, G2 be vertex-disjoint graphs. If rank(G1∨G2) = dnzr(G1∨G2)

then G1 and G2 each satisfy the equivalent conditions of Theorem 2.

Theorem 3. Let G1, G2 be vertex-disjoint graphs. Suppose that G1, G2 each

satisfy the equivalent conditions of Theorem 2. Assume, in addition, that we have

z(Gi)
TB(Gi)

−1e(ti) > 1 whenever B(Gi) is nonsingular. Then

rank(G1 ∨G2) = dnzr(G1 ∨G2) and z(G1 ∨G2)
TB(G1 ∨G2)

−1e(t(G1∨G2)) > 1.

Conjecture. Let G be a graph with no isolated vertices. If rank(G) = dnzr(G),

then z(G)TB(G)−1e(t(G)) > 1.

The preceding conjecture is equivalent to the conjecture mentioned at the intro-

ductory paragraph.
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We rely on [8] for terminology and notation; every graph considered in this abstract
is finite and simple. Let the least eigenvalue of a graph G be denoted by �(G). Let
the class of all graphs G with �(G) ⩾ −2 be denoted by ℒ2. It has been found that
the family of all line graphs is a subclass of ℒ2. (For a proof and for more information
in this regard, see [2].) This fact has prompted many authors to devote considerable
attention to the study of ℒ2. A. J. Hoffman [5] has found an important subfamily of
ℒ2, whose members are called generalized line graphs:

For any positive integer n, the cocktail party graph CP(n) is the graph obtained
from K2n by removing a perfect matching; CP(0) is the graph without vertices. If G is
a graph with vertex set {1, 2, . . . , n} and �1, �2, . . . , �n are nonnegative integers, then
the generalized line graph L(G;�1, �2, . . . , �n) is obtained from the (disjoint) union of
L(G) and CP(�i), i = 1, 2, . . . , n by forming additional edges: a vertex e in L(G) is
adjacent to all vertices in CP(�i) whenever i is an endpoint of e in G.

P. J. Cameron, J. M. Goethals, J. J. Seidel and E. E. Shult have found [2] an
algebraic description of the family of all generalized line graphs and a classification
of ℒ2. Using the results of [2] obtained in this regard, D. Cvetković, M. Doob and S.
Simić have found [3] all minimal nongeneralized line graphs. (If a graph G is not a
generalized line graph whereas every proper induced subgraph of G is a generalized
line graph, then G is called a minimal nongeneralized line graph.) Doob has observed
that if G is a minimal nongeneralized line graph with �(G) < −2, then it has an
induced subgraph H with �(H) = −2. This fact has motivated him to try to prove
that the conclusion of this observation holds for every graph G with �(G) < −2 and
to introduce the notion defined as follows: a real number ℓ is called spectral if every
graph G with �(G) < ℓ has an induced subgraph H with �(H) = ℓ. (Doob has not
used the term ‘spectral number’; he has referred to such numbers as ‘numbers having
induced subgraph property’.)

Relying on a result of B. McKay obtained by computer search—every graph G of
order less than 10 with �(G) < −2 has an induced subgraph H with �(H) = −2—and
using the algebraic properties of the class of all minimal nongeneralized line graphs
found by [3], Doob has concluded [4] that −2 is a spectral number; he has easily
shown that −

√
2,−1, 0 are the other spectral numbers.

Subsequently, F. C. Bussemaker and A. Neumaier have found [1] the entire family
ℳ of all minimal graphs G with �(G) < −2 by using computer search—the cardinality
of ℳ is 1812; by verifying that every graph in ℳ has an induced subgraph whose least
eigenvalue is −2, they have confirmed that −2 is a spectral number.

A variant of the notion ‘spectral number’ has been introduced in [7]: A real
number ℓ is called weakly spectral , if every tree T with �(T ) < ℓ has a subtree U
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with �(U) = ℓ. Let the set of all spectral numbers and the set of all weakly spectral
numbers be denoted by S and W, respectively. It is easy to see that every spectral
number is also a weakly spectral number; i.e., S ⊂ W. In this talk, we describe a
process of showing that S = {−2,−

√
2,−1, 0} and W = {−2,−

√
3,−
√

2,−1, 0}; this
process is similar to the one found in [7] to compute W; it relies on the result of [6]
and does not depend upon any computer oriented result.
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Let Γ be a connected graph on n vertices, with diameter D and adjacency matrix

A. Assume that A has d+1 distinct eigenvalues �0 > �1 > . . . > �d with corresponding

multiplies m0 = 1, m1, . . ., md. Consider the (d+ 1)-dimensional vector spaces ℝd[x]

of polynomials of degrees at most d with inner product defined by

< p(x), q(x) >:=
d∑

i=0

mi

n
p(�i)q(�i) = tr(p(A)q(A))/n

for p(x), q(x) ∈ ℝd[x]. It is known that ℝd[x] has a unique orthogonal basis p0(x) =

1, p1(x), . . . , pd(x) such that pi(x) has degree i and < pi(x), pi(x) >= pi(�0). The

polynomial qd(x) := p0(x) + p1(x) + ⋅ ⋅ ⋅ + pd(x) is called the Hoffman polynomial of

Γ, and if Γ is regular then qd(x) = J, the all 1’s n× n matrix.

Let Ai be the i-th distance matrix, i.e. an n × n matrix with rows and columns

indexed by the vertex set of Γ such that

(Ai)xy =

{
1, if ∂(x, y) = i;
0, else.

Note that A0 + A1 + ⋅ ⋅ ⋅+ AD = J.

Define

f(x) := pD(x) + pD+1(x) + ⋅ ⋅ ⋅+ pd(x),

�D := trace (ADqd(A))/n,

�D := trace (ADJ)/n.

Note that �D = �D if Γ is regular, and f(x) = pD(x) if d = D. The positive value

f(�0) =< f(x), f(x) > is called the spectral excess of Γ, and �2D/�D is called the

excess of Γ. We shall prove the following theorem, which was first proved under the

assumption that Γ is regular and d = D [1] and reproved in [3, 2].
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Spectral Excess Theorem. f(�0) ≥ �2D/�D with equality iff AD =
√

�D
f(�0)

f(A).

It is well known that if Γ is regular and D = d, then the above equality holds iff

Γ is distance-regular [1].
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Let G be the graph with n vertices and m edges. Eigenvalues of the adjacency

matrix A(G) of a graph G are called the eigenvalues of G and their collection is

called the spectrum of G [1]. The eigenvalues of the distance matrix D(G) of a graph

G are caled the D-eigenvalues of G and their collection is called the D-spectra of G [1].

Let �1, �2, . . . , �n be the eigenvalues of G then the energy E(G) of a graph G is

defined as [2]

E(G) =
n∑

i=1

∣�i∣

Let 
1, 
2, . . . , 
n be the D-eigenvalues of G then D-energy ED(G) of a graph G

is defined as [3]

ED(G) =
n∑

i=1

∣
i∣

Theorem [4]: If G is a graph with n vertices, m edges and adjacency matrix A(G)

then

√
2m+ (n− 1)∣det(A(G))∣2/n ≤ E(G) ≤

√
2mn
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Two graphs G1 and G2 are said to be equienergtic if E(G1) = E(G2). Following

result leads to the construction of infinetly many pairs of noncospectral equienergtic

graphs having equal order and equal size.

Theorem [6]: Let G be a regular graph on n vertices and of degree r ≥ 3, then

E(L2(G)) = 2nr(r − 2)

where L2(G) is the second line graph of G.

Also in this paper, we discuss other results on spectra and energy of various class

of graphs [5, 7].
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The identifying codes were first introduced by Karpovsky, Chakrabarty, and Lev-
itin in [6]. Identifying codes of graphs are constructed for fault diagnosis in multipro-
cessor systems [4, 6, 7]. Charon, Hudry, and Lobstein [2] proved that the determining
an identifying code with minimum cardinality in a graph is NP-hard. Recently, re-
searchers focus on the study of identifying code and extended problems [1, 3, 5].

Let G be a graph, u be a vertex of G, and B(u)(or BG(u)) be the set of u with
all its neighbors in G. A set S of vertices is called an identifying code of G if, for
every pair of distinct vertices u and v, B(u) ∩ S and B(v) ∩ S are nonempty and
distinct. A minimum identifying code of a graph G is an identifying code of G with
minimum cardinality and M(G) is the cardinality of a minimum identifying code
in G. A minimum identifying code graph G of order n is a graph with M(G) =
⌈log2(n+ 1)⌉ having the minimum number of edges. For finding the number of edges
on a minimum identifying code graph is one of important problems for reducing
the cost of constructing a minimum identifying code graph or network. Moncel [8]
constructed minimum identifying code graph of order 2m − 1 for each integer m ≥ 2
and addressed the question for finding minimum identifying code graphs of order n
for arbitrary positive integer n. In the paper, we construct minimum identifying code
graphs of order n for each positive integer n ≥ 4 and investigate related properties.
Hence, this question is well-studies by us.
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In 1958, Prange [1] introduced quadratic residue (QR) codes, which are cyclic

codes with code rates greater than or equal to 1/2. There are twelve binary QR

codes of length not exceed 103, namely, 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103,

and except for those of lengths 71, 73, 97, the other nine are the best known codes

because of their large minimum distances.

Elia [2] proposed, in 1987, the first algebraic decoding algorithm for the binary

Golay code, or the QR code of length 23. Later, Reed et al. presented algebraic

decoders for QR codes of lengths 31, 41, and 73 in 1990 [3], 1992 [4], and 1994 [5],

respectively. The key idea is to use the Sylvester resultant or Gröbner bases meth-

ods to solve the nonlinear multivariate equations provided by the Newton identities.

When the code length is large, this method encounters the difficulty of insufficient

syndromes. For example, the QR code of length 47 is the smallest one cannot be

decoded by this decoding scheme.

In 2001, He et al. [6] modified a matrix method proposed by Feng to express the

needed unknown syndrome as a function in known syndromes. With enough “known”

syndromes, the binary QR code of length 47 was decoded successively by the above

decoding algorithm.

The authors et al. used the modified Feng-He matrix method to express the

unknown syndromes as functions of known syndromes to obtain enough consecutive

known syndromes. With the unknown syndrome representations, we can apply the

famous Berlekamp-Massey algorithm to determine the error-locator polynomial and

then apply the Chien search to find the error positions. Based on this decoding

scheme, we developed the decoders for the binary QR codes of lengths 71, 79, and 97

in 2003 [7], of lengths 103 and 113 in 2005 [8], and of length 89 in 2008 [9]. Therefore,

the decoders of all the binary QR codes of lengths not exceed 103 are developed.

Furthermore, this method can also be applied to decode those QR codes with larger

lengths.
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Although the previous decoding algorithm can decode any binary QR code, it is

not a one-step decoder. There are four steps in this algorithm: First, compute the

known syndromes. Next, use the unknown syndrome representations to calculate the

needed unknown syndromes. In the third and fourth steps, apply Berlekamp-Massey

algorithm and Chien search to determine the error-locator polynomial and error po-

sitions, respectively. When using this scheme to correct a v-error pattern, the second

and third steps are executed v rounds, and in each round different representations

are used.

In 2010, the authors [10] proposed a one-step decoder for a class of binary QR

codes, namely, QR codes with irreducible generator polynomials. We show that any

such binary QR code possesses a unified unknown syndrome representation, which

can be provided by the Lagrange interpolation formula. And, by utilizing this unified

representation, each correctable error pattern can be determined by executing each

of the four steps exactly once.
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A vertex irregular total k − labeling � : V (G) ∪ E(G) → {1, 2, ..., k} of a graph G is a
labeling of vertices and edges of G done in such a way that for any two different vertices
x and y, their weights wt(x) and wt(y) are distinct. The weight wt(x) of a vertex x is the
sum of the label of x and the labels of all edges incident with x. The minimum k for which
a graph G has a vertex irregular total k − labeling is called the total vertex irregularity
strength of G, denoted by tvs(G). In this talk, we disscuss how the addition of a new edge
affects the total vertex irregularity strength of a graph.
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The problem of destroying all cycles in a graph by deleting a set of vertices orig-

inated from applications in combinatorial circuit design [2]; also, it has found appli-

cations in many fields. A set of vertices of a graph whose removal leaves an acyclic

graph is referred to as a decycling set [1]. The minimum cardinality of a decycling

set of G, denoted by �(G), is referred to as the decycling number of G.

Besides searching for the value of the decycling number in the order of a graph,

another parameter that is closely related to the decycling number is the cycle packing

number, which is the maximum number of vertex-disjoint cycles. We denote this

parameter by c(G). A trivial relation between the decycling number and the cycle

packing number is c(G) ≤ �(G).

A graph is said to be outerplanar provided that all its vertices lie on the boundary

of a face (after embedding the graph in a sphere). Even for an outerplanar graph G,

not much is known about �(G). Kloks et al. [3] proved that �(G) ≤ 2c(G).

An outerplanar graph G is called lower-extremal if �(G) = c(G) and upper-

extremal if �(G) = 2c(G). We study these two extremal cases. For simplicity, we use

ij to denote an edge {i, j}.
Definition 1. Sk is a graph with parameters (V,E) where V = {0, 1, ⋅ ⋅ ⋅ , 2k−1} and

E = {i(i+ 1) : 0 ≤ i ≤ 2k − 1} ∪ {i(i+ 2) : i is even} (the indices are under modulo

2k).

Then �(Sk) = ⌈k
2
⌉ and c(Sk) = ⌊k

2
⌋. We define the simplified graph of a graph G

to be the graph obtained from G by continuously deleting vertices of degree one until

there is no more degree one vertex and denote it by ⌊G⌋. Then, we have
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Lemma 1. For an outerplanar graph G with c(G) = 1, G is upper-extremal if and

only if ⌊G⌋ is a subdivision of S3.

A graph is an S3-tree of order t if it has exactly t vertex-disjoint S3-subdivisions

and every edge not on these S3-subdivisions belongs to no cycle.

For X, Y ⊆ V (G), an X, Y -path is a path having one endpoint in X, the other

one in Y , and no other vertex in X ∪ Y , and a {v}, Y -path can be simply written as

a v, Y -path. Then,

Lemma 2. An outerplanar graph G comprised of a connected S3-tree H of order t and

two internally disjoint v, V (H)-paths has t+ 1 vertex-disjoint cycles for v /∈ V (H).

Based on the observation in Lemma 2, we prove the necessary condition of the

following result by induction on c(G).

Theorem 3. An outerplanar graph G is upper-extremal if and only if G is an S3-tree.

To prove that a property is sufficient for a graph being lower-extremal, we will

use induction. A graph property is called monotone if it is closed under removal of

vertices. We provide the following general result that is applicable to all graphs.

Lemma 4. Suppose that a 2-connected graph is lower-extremal provided that it sat-

isfies a monotone property P. Then G is lower-extremal if G satisfies P.

Then we prove the following result by induction on ∣E(G)∣.

Lemma 5. If G is a 2-connected outerplanar graph with no Sk-subdivision for all odd

number k, then G is lower-extremal.

The property of being without Sk-subdivision is monotone. Therefore, by Lemma

4 and Lemma 5, we have

Theorem 6. For an outerplanar graph G, if G has no Sk-subdivision for all odd

number k, then G is lower-extremal.
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A subset S of the vertex set of a hypergraph ℋ is called a dominating set of ℋ
if for every vertex v not in S there exists u ∈ S such that u and v are contained

in an edge in ℋ. The minimum cardinality of a dominating set in ℋ is called the

domination number of ℋ and is denoted by 
(ℋ). A transversal of a hypergraph ℋ is

defined to be a subset T of the vertex set such that T ∩E ∕= ∅ for every edge E of ℋ.

The transversal number of ℋ, denoted by �(ℋ), is the minimum number of vertices

in a transversal. In the case of graphs a transversal is also called a vertex cover. A

hypergraph is of rank k if each of its edges contains at most k vertices.

The inequality �(ℋ) ≥ 
(ℋ) is valid for every hypergraph ℋ without isolated ver-

tices. In this paper we investigate the structure of graphs and hypergraphs satisfying

�(ℋ) = 
(ℋ).

First we consider graphs with � = 
. The problem of characterizing graph with

� = 
 first appeared in [4]. Later in 1981, Laskar and Walikar [2] also mentioned

this problem. First, Hartnell and Rall answered the question in [1], but their char-

acterization was quite complicated. Randerath and Volkmann established another

characterization in [3], but it was precise only for graphs of minimum degree at
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least 2; this characterization was recently completed by Wu and Yu [5] for the case

of � = 1.

Here we give the characterization in a unified simpler way, avoiding redundances.

This is a similar but different formulation from those in [3] and [5]. We need the

following notions.

∙ A vertex v of a graph G = (V,E) is called stem if v is adjacent to a vertex of

degree 1. The set of all stems of G is denoted by Stem(G) [5].

∙ Let S(G) denote the graph obtained from G by deleting all edges contained en-

tirely in Stem(G). Note that transformation S does not create isolated vertices,

unless G contains some component isomorphic to K2.

Theorem. For a connected graph G of order at least 3, �(G) = 
(G) holds if and

only if there exists a bipartition (A,B) of S(G) such that, Stem(G) ⊆ A, moreover

for every pair u, v ∈ A ∖Stem(G), if u and v have some common neighbor then they

have at least two common neighbors of degree two.

By this characterization, graphs with � = 
 and without isolates can be recognized

in polynomial time. We design such an algorithm with running time O(
∑

v∈V d
2(v)).

Moreover, we note that the condition on degree-2 neighbors implies ∣A∣ ≤ ∣B∣.
We now consider hypergraphs ℋ for which �(ℋ) = 
(ℋ). We prove that the cor-

responding recognition problem is NP-hard already on the class of 3-uniform linear

hypergraphs. Structurally we focus our attention on hypergraphs in which each sub-

hypergraph ℋ′ without isolated vertices fulfills the equality �(ℋ′) = 
(ℋ′). It is

shown that if each induced subhypergraph satisfies the equality then it holds for the

non-induced ones as well. Moreover, we prove that for every positive integer k, there

are only a finite number of forbidden subhypergraphs of rank k, and each of them

has domination number at most k.
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In this talk we present some results related to the Weak Roman domination number
of a graph. We also discuss two more parameters of a graph namely, the Efficient Roman
Domination number and the Clique star cover number. By a graph G = (V.E) , we mean
a finite, undirected and connected graph with neither loops nor multiple edges. For graph
theoretic terminology we refer to F. Harary [2] . Cockayne et al. [1] defined a Roman
dominating function (RDF) on a graph G = (V,E) to be a function f : V → {0, 1, 2}
satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one
vertex v for which f(v) = 2. For a real-valued function f : V → R the weight of f is
w(f) =

∑
v∈V f(v) and for S ⊆ V we define f(S) =

∑
v∈S f(v), so w(f) = f(V ). The

Roman domination number, denoted by 
R(G), is the minimum weight of an RDF in G;
that is, 
R(G) = min{w(f)∣f is an RDF in G}. An RDF of weight 
R(G) is called a 
R(G)-
function. If V0, V1 and V2 are the sets of vertices assigned the values 0, 1 and 2 respectively
under f , then there is a 1-1 correspondence between the functions f : V → {0, 1, 2} and the
ordered partitions (V0, V1, V2) of V . Thus f = (V0, V1, V2).

Weak Roman Domination Number

Henning and Hedetniemi [3] defined the weak roman domination number of a graph G
as follows. A vertex u ∈ V0 is undefended with respect to f, or simply undefended if the
function f is clear from the context, if it is not adjacent to a vertex in V1 or V2. A function
f : V → {0, 1, 2} is said to be a weak Roman dominating function (WRDF) if each vertex
u ∈ V0 is adjacent to a vertex v ∈ V1∪V2 such that the function f ′ : V → {0, 1, 2}, defined by
f ′(u) = 1, f ′(v) = f(v) − 1 and f ′(w) = f(w) if w ∈ V − {u, v}, has no undefended
vertex. They defined the weight w(f) to be ∣V1∣ + 2∣V2∣. The weak Roman domination
number, denoted by 
r(G), is the minimum weight of a WRDF in G, that is, a WRDF
of weight 
r(G) is called a 
r(G)-function. They also observed that for any graph G,

(G) ≤ 
r(G) ≤ 
R(G) ≤ 2
(G).

We characterize trees T for which 
r(T ) = 
(T ). For this purpose we introduce a family
ℑ of trees as follows. A tree T ∈ ℑ if the following conditions holds.

(i) No vertex of T is a strong support.

(ii) If u ∈ V (T ) is a non support which is adjacent to a support, then N(u) contains
exactly one vertex which is neither a support nor adjacent to a support and all other
members of N(u) are either supports or adjacent to supports.

(iii) For any vertex u of degree at least two, there exists at least one leaf vertex v such
that d(u, v) ≤ 3.
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(iv) Two vertices which are neither supports nor adjacent to supports are not adjacent.

Theorem 1 [6]: For any tree T, 
r(T ) = 
(T ) if and only if T ∈ ℑ.

Clique Star Cover Number

Wayne Gaddard et.al [8] defined the clique star cover number �s(G) as follows. A Coloniza-
tion of G is defined as a partition of the vertex set into sub graphs each with a dominator
(a vertex adjacent to all other nodes in the sub graph ). The weight of a colonization
counts 1 for each clique and 2 for each non-clique. Then �s(G) is the minimum weight of a
colonization.

We prove the following theorem on the equality of 
R and �s of a graph G.

Theorem 2 [7]: Let G be a graph. Then 
R(G) = �s(G) if and only if there exists a
colonization Ĉ of G of minimum weight such that no member of Ĉ is a Kt, t > 1.

In order to characterize the class of trees for which 
R(T ) = �s(T ), we introduce a family
ℑ1 of trees as follows. Let Â = {A∣A is a star with at least 3 end
vertices}, B̃ = {B∣B ∼= P3} and Ĉ = {C∣C ∼= K1}. Let H = Â ∪ B̃ ∪ Ĉ. A tree
T ∈ ℑ1 if T is the union of H and a collection " of edges subject to the following conditions.

(i) Between any two vertices in H, there exists a unique path.

(ii) Ĉ is independent.

(iii) An end vertex of a member in Â is adjacent to at most two vertices in Ĉ.

(iv) No two end vertices of members in B̃ are adjacent.

(v) A vertex of a member in B̃ is neither adjacent to a vertex in Ĉ nor adjacent to a head
vertex of a member in Â.

(vi ) Corresponding to each Â in A, there exist at least two end vertices x1, x2 in A such
that each xi, i = 1, 2 is either of degree one or adjacent to an end vertex in Â.

Theorem 3 [7]: Let T be a tree of order n. Then 
R(T ) = �s(T ) if and only if T ∈ ℑ1.
We prove the following theorem on the equality of 
r and �s of a graph G.

Theorem 4 [7]: Let G be a graph with a colonization Ĉ of minimum weight. Then

r(G) = �s(G) if and only if for every non clique colony C in Ĉ with dominator x, there
exists at least one vertex in V (C)− x, which is neither adjacent to a vertex of a clique nor
adjacent to a dominator of a non clique of Ĉ.

We define a family ℑ∗ of trees as follows.
Let A1 = {A∣A is a star}, B1 = {B∣B ∼= P2} and C1 = {C∣C ∼= K1}.
Let H1 = A1 ∪B1 ∪C1. A tree T ∈ ℑ∗ if T is the union of H and a collection " of edges

subject to the following conditions.

(i) Between any two vertices in T , there is a unique path.

(ii) C1 is independent.

(iii) Corresponding to each A in A1, at most n−1 end vertices in A are adjacent to vertices
of members of B1.
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(iv) No two vertices in C1 are adjacent to a vertex of B in B1 and no two vertices in C1

are adjacent to the two end vertices of a B in B1.

Theorem 5 [7]: Let T be a tree of order n. Then 
r(T ) = �s(T ) if and only if T ∈ ℑ∗ .

Theorem 6 [7]: For any 2× n grid graph G, 
R(G) = n+ 1.

Theorem 7 [7]: For any 2× n grid graph G, �s(G) = n and 
R(G) = �s(G) + 1.

Efficient Roman Domination

The idea of efficiency was extended to Roman domination by Rubalcaba and Slater [4]. We
recall the definitions of an efficient Roman dominating function and some related terms. A
(j,k)-packing is a function f : V (G) → {0, 1, 2, . . . , j} with f(N [v]) ≤ k for all v ∈ V (G).
Thus a 2-packing is a (1,1)-packing, and in particular, a (2,2)-packing is a function f :
V (G) → {0, 1, 2} with f(N [v]) ≤ 2 for all v ∈ V (G). For a function f : V (G) → {0, 1, 2}
the Roman influence of f, denoted by IR(f) is defined to be IR(f) = (∣V1∣ + ∣V2∣ +

∑
v∈V2

deg(v)). The efficient Roman domination number of G, denoted by FR(G) is defined to be
the maximum of IR(f) such that f is a (2,2)-packing. That is FR(G) = max{IR(f) : f is a
(2,2)-packing}. A (2,2)-packing f with FR(G) = IR(f) is called an FR(G) function. Graph
G is said to be efficiently Roman dominatable, if FR(G) = n where n is the order of G and
when FR(G) = n, the FR(G)-function is called an efficient Roman dominating function.

Definition: We define a graph T ∗ to be the union of stars K1,ni, 1 ≤ i ≤ k and a collection
" of edges subject to the following conditions.

(i) If e = vw ∈ ", then e is an edge joining v ∈ V (K1,ni) and w ∈ V (K1,ni),
i ∕= j where v and w are end vertices.

(ii) For any pair of vertices v ∈ V (K1,ni) and w ∈ V (K1,nj), i ∕= j, there exists a unique
path joining v and w.

Theorem 8 [5]: Let T be a tree of order n. Then FR(T ) = n if and only if T ∼= T ∗.
Theorem 9 [5]: Let G be a unicyclic graph of order n. Let C be the cycle in G. Then
FR(G) = n if and only if one of the following holds.

(i) There exists an edge e = vw in C such that G − e ∼= T ∗ where either both v and w
are end vertices of K1,ni in T ∗ for some i or v is an end vertex of K1,ni in T ∗ and w
is an end vertex of K1,nj in T ∗ for some i and j, i ∕= j.

(ii) There exists a vertex w in C such that the components T1, T2, . . . , Ts of G − w are
isomorphic to T ∗ where G is obtained by joining w to a head vertex of one component
Ti and to end vertices of stars in the other components Tj(j ∕= i).
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Open problems

∙ Graphs with 
(G) = 
r(G) = 
R(G) can be characterized. Also graphs with 
r(G) =

R(G) can be characterized.

∙ Much work has not been done related to the parameter weak Roman domination
number of a graph. (a) Bounds can be obtained in terms of girth and diameter of
the graph, (b) Criticality in graphs can be studied in this direction, (c) The idea of
efficiency can be extended to weak Roman domination.

∙ Regarding the clique star cover number, graphs with 
r(G) = �s(G) = 
R(G) can be
characterized.
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The enumeration of standard Young tableaux (SYTs) is a fundamental problem in

combinatorics and representation theory. For example, it is known that the number

of SYTs of a given shape � ⊢ n is counted by the hook-length formula [4]. However,

the problem of counting SYTs of bounded height is a hard one. Let Tk(n) := {� =

(�1, �2, . . . , �k) ⊢ n : �1 ≥ . . . �k ≥ 0} be the set of SYTs with n entries and at most

k rows, and let Tk =
∪∞

n=1 Tk(n) be the k-rowed strip. In 1981, Regev proved that

∣T2(n)∣ =
(
n

⌊n
2
⌋

)
and ∣T3(n)∣ =

∑

i≥0

1

i+ 1

(
n

2i

)(
2i

i

)

in terms of symmetric functions [8]. Note that ∣T3(n)∣ is exactly the Motzkin number

mn. In 1989, together with ∣T2(n)∣ and ∣T3(n)∣, Gouyou-Beauchamps derived that

∣T4(n)∣ = c⌊n+1
2
⌋c⌈n+1

2
⌉ and ∣T5(n)∣ = 6

⌊n
2
⌋∑

i=0

(
n

2i

)
ci

(2i+ 2)!

(i+ 2)!(i+ 3)!

combinatorially, where cn = 1
n+1

(
2n
n

)
is the Catalan number [6]. These are in fact all

the simple formulae we have for ∣Tk(n)∣ so far [10].

Recently Regev considered the following variation among others. Given � =

(�1, �2, �3) a partition of at most three parts, let ∣�∣ := �1 +�2 +�3 and T3(�;n−∣�∣)
be the set of SYTs with n− ∣�∣ entries in the “skew strip” T3/�. Regev conjectured

that for � = (2, 1, 0),

∣T3((2, 1, 0);n− 3)∣ = mn−1 −mn−3,

a difference of two Motzkin numbers [9]. This conjecture is confirmed by Zeilberger

by using the WZ method [1]. What’s more, with his powerful Maple package AMITAI,

Zeilberger could generate and rigorously prove many similar identities, among them

are a list of formulae of ∣T3(�;n − ∣�∣)∣ for �1 ≤ 20, and the number of SYTs in

T3 with the restriction that the (i, j) entry is m for 1 ≤ m ≤ 15. Amazingly, each

formula is a linear combination of negative shifts of the Motzkin numbers with con-

stant coefficients. Zeilberger then asked that, besides Regev’s question of finding a
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combinatorial proof of the mn−1−mn−3 conjecture (now a theorem, after Zeilberger),

is there a uniform way to construct combinatorial proofs to all of these results, or

prove that there is no natural bijection because the identities are true ‘just because’.

In the first part of this work we answer Regev and Zeilberger’s questions affir-

matively. We shall present a simple bijection between T3(n) and the set of Motzkin

paths of length n, which gives another proof for ∣T3(n)∣ = mn. With this bijection

we can prove Regev’s conjecture and consequently all of Zeilberger’s identities for

three-rowed SYTs combinatorially. This part of work has been published [2].

The second part of this work is to extend the bijection and reveal an (unexpected)

relation between ∣T2ℓ(n)∣ and ∣T2ℓ+1(n)∣. Let {e1, . . . eℓ+1} denote the standard basis

of ℝℓ+1 and let ℒ2ℓ+1(n) be the set of n-step lattice paths in ℝℓ+1
≥0 from the origin

to the axis along e1, using 2ℓ + 1 kinds of steps e1, e1 ± e2, e1 ± (e2 − e3), e1 ±
(e3 − e4), . . . , e1 ± (eℓ − eℓ+1). By combining works of Grabiner and Magyar [7] and

Gessel [5], Zeilberger proved [13], equivalently, that

∣T2ℓ+1(n)∣ = ∣ℒ2ℓ+1(n)∣.

The main result is the following, which completes the description of the SYTs with

bounded height in terms of lattice paths: Let ℒ2ℓ(n) be the set of lattice paths in

ℒ2ℓ+1(n) with the restriction that the e1 steps appear only on the hyperplane spanned

by {e1, . . . , eℓ}. Then we have

∣T2ℓ(n)∣ = ∣ℒ2ℓ(n)∣.
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Given a graph G, let sk be the number of stable sets (or independence sets) of

cardinality k of G, and �(G) the size of a maximum stable set. The independence

polynomial of G is defined by I(G;x) = Σ�
k=0skx

k [1]. A graph G is well-covered if

all its maximal stable sets are of the same size [2]. A graph G is very well-covered

if it has no isolated vertices, it is well-covered, and ∣G∣ = 2�(G) [3]. For example,

appending a single pendant edge to each vertex of G yields a very well-covered graph,

which is denoted by G∗. Under certain conditions, any well-covered graph equals G∗

for some G [4].

A finite sequence of real numbers {a0, a1, a2, . . . , an} is said to be: (1)unimodal

if there is some k with 0 ≤ k ≤ n, called the mode of the sequence, such that

a0 ≤ . . . ≤ ak−1 ≤ ak ≥ ak+1 ≥ . . . an; (2)log-concave if a2i ≥ a1+1ai−1 holds for

1 ≤ i ≤ n− 1. It is known that any log-concave sequence of positive numbers is also

unimodal, but the converse is not true. Any polynomial is unimodal if the sequence

of its coefficients is unimodal.

The following results will be presented in this talk:

(i) I(G∗;x) is unimodal for any G∗ whose skeleton G has �(G) ≤ 8.

(ii) With (i) and [5], we conjecture that I(G∗;x) is unimodal and ⌈n+1
2
⌉ ≤ mode(G∗) ≤

min{⌈n+1
2
⌉ + �−1

2
, ⌈2n−1

3
⌉} for any G with �(G) ≥ 3. Concrete graphs are given to

show that the bounds in our conjecture are tight.

(iii) In [6], it is shown that the independence polynomial distinguishes well-covered

spiders (K∗
1,n, n ≥ 1) among well-covered trees. We derive a formula for I(K∗

t,n;x) for

t ≥ 2, and prove that I(K∗
t,n;x) is log-concave for 2 ≤ t ≤ 5. A conjecture about

the log-concavity of I(K∗
t,n;x) for t ≥ 6 is given based on the formula and many

supporting evidences by computer experiments.
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Consider a visit to a new city for a conference! A hotel recommendation system

for the city gives us the position of n hotels, located at point sites P = {p1, . . . , pn}.
We propose to visit a set of m locations of interest, S = {s1, . . . , sm}, e.g. museum,

garden, beach, restaurant, etc. and would like a short list of hotels near these locations.

The system need not list any hotel p ∈ P that is farther from all locations than some

other hotel q ∈ P . Consider another problem of similar nature. There is a set of n

buildings and multiple fires have broken out at m locations. A fire fighting team wants

to identify a subset of buildings that are to be evacuated ahead of other buildings.

It turns out that both the above problems are special cases of a problem considered

in the database community [2, 3]. Consider a database whose entries are objects with

d attributes of interest. Given two objects p and q, we write p ≽ q if every attribute

of p is larger or equal to the corresponding attribute of q. If p ≽ q but not q ≽ p, then

we say that p dominates q. An object is called non-dominated or a skyline object if

it is not dominated by any object in the database. A skyline query is the problem of

determining the skyline objects in a database with respect to a given set of attributes.

Börzsönyi et al. [2] proposed to add a skyline operator to solve skyline queries in an

existing (relational, object-oriented or object-relational) database system.

Our hotel recommendation and fire fighting problems, which are of geometric

nature, fit this framework exactly if we choose the attributes of each point in P to be

1This work appeared in [1]
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the negative distances to the points in S. Sharifzadeh and Shahabi [3] use the term

spatial skyline query for this special version of the problem. Son et al. [4] have also

looked at this problem.

For a formal definition, let P be a set of n point sites and let S be a set of m points

(locations) in ℝd. Let d(x, y) be the usual L2 distance in ℝd. For two sites p, q ∈ P
we write p ≽ q if d(p, s) ≤ d(q, s) for every s ∈ S. p ∈ P dominates q ∈ P ∖ {p}
simply if p ≽ q. Conversely, p is not dominated by q if and only if there is a site s ∈ S
such that d(p, s) < d(q, s). It follows that a site p ∈ P is a skyline point if and only

if for every site q ∈ P ∖ {p} there is a site sq ∈ S with d(p, sq) < d(q, sq).

The distances to the points of S can be considered attributes describing the sites

of P . A site p ∈ P dominates q ∈ P if and only if it is strictly better in at least

one attribute and is at least as good in all attributes. In our scenario for a hotel

recommendation system, if p ∈ P is dominated by q ∈ P , then p need not be on the

short list of hotels for a tourist visiting S.

Our problem is to extract the skyline points of P with respect to S. Let ℎ(p, q)

denote the half-plane containing p that is bounded by the perpendicular bisector of p

and q. A brute force approach to identify whether p ∈ P is a skyline point is to

determine, for all q ∕= p, if at least one site s ∈ S lies in ℎ(p, q). This takes Θ(mn)

time for each p, giving a total time of Θ(mn2).

We use lifting techniques [5] to give several geometric views of dominance and non-

dominance problems, involving balls, lower envelopes of cones, and Voronoi diagrams

with a convex polygonal distance function (determined by S) and additive weights

(determined by P ) to come up with the following characterization of skyline points.

Result 1 The skyline or non-dominated points of a set P with respect to locations S

are those with non-empty Voronoi cells under a convex distance function determined

by S with additive weights determined by P .

When the sites P and points S are given in the plane, then Result 1 supports

especially efficient computation. The disk and cone views imply structures of size

O(nm). We are able to show that a Voronoi diagram for convex distance functions

with additive weights is an instance of an abstract Voronoi diagram as in Klein et

al. [6]. Klein et al. [6] gave a generic randomized incremental algorithm to compute the

abstract Voronoi diagram of n sites in expected time O(n log n). The single primitive

operation required by Klein et al. is the computation of the Voronoi diagram of five

sites which is a constant time operation. But in our case this constant time operation

has to be replaced by the convex distance function computation that takes O(logm)

time. Recall that S(= O(m)) determines the convex distance function. Thus, we

have an O(m logm + n log n logm)-time randomized incremental algorithm to find

the non-dominated points.
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In a secret sharing scheme, a dealer distributes shares of a secret key among a

set of n participants in such a way that only qualified subsets of participants can

reconstruct the secret key from the shares they receive from the dealer. The set of

qualified subsets is called the access structure of this scheme. The information rate

(resp. average information rate) of a secret sharing scheme is the ratio between the size

of the secret key and the maximum size (resp. average size) of the shares. In a weighted

threshold scheme, each participant has his or her own weight. A subset is qualified

if and only if the sum of the weights of participants in the subset is not less than

the given threshold. Morillo et al.[11] discussed the schemes for weighted threshold

access structure that can be represented by graphs, called k-weighted graphs. They

characterized this kind of access structures and derived a result on the information

rate. In this talk, we deal with the average information rates of the schemes for these

structures. Comparing with the known results, two more sophisticated constructions

are presented, each of which has its own advantages and both of them perform very

well when n/k is large.
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1 Introduction

Definition 1 A proper edge coloring of G = (V,E) is a map c : E → C (where C is

the set of available colors ) with c(e) ∕= c(f) for any adjacent edges e,f . The minimum

number of colors needed to properly color the edges of G, is called the chromatic index

of G and is denoted by �′(G).

Definition 2 A proper edge coloring c is called acyclic if there are no bichromatic

cycles in the graph. In other words an edge coloring is acyclic if the union of any

two color classes induces a set of paths (i.e., linear forest) in G. The acyclic edge

chromatic number (also called acyclic chromatic index), denoted by a′(G), is the

minimum number of colors required to acyclically edge color G.

The primary motivation for our work is the following conjecture by Alon, Sudakov

and Zaks [2] (and independently by Fiamcik [6]):

Acyclic Edge Coloring Conjecture: For any graph G, a′(G) ≤ Δ(G) + 2.

2 Previous Works

Acyclic Edge Coloring was first studied by Fiamcik [5]. He solved the conjecture for

subcubic graphs. His papers were not available in English till recently and hence

was unknown. Alon, McDiarmid and Reed [1] introduced it independently and us-

ing probabilistic methods proved that a′(G) ≤ 64Δ. They also mentioned that the

constant 64 could be improved with more careful application of the Lovasz Local

Lemma. Later Molloy and Reed showed that a′(G) ≤ 16Δ. This is the best known
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bound currently for arbitrary graphs. The best known constructive bound for general

graphs is by Subramanian [12] who showed that a′(G) ≤ 5Δ(log Δ + 2).

Though the best known upper bound for general case is far from the conjectured

Δ + 2, the conjecture has been shown to be true for some special classes of graphs.

Alon, Sudakov and Zaks [2] proved that there exists a constant k such that a′(G) ≤
Δ + 2 for any graph G whose girth is at least kΔ log Δ. They also proved that

a′(G) ≤ Δ + 2 for almost all Δ-regular graphs. This result was improved by Nešetřil

and Wormald [10] who showed that for a random Δ-regular graph a′(G) ≤ Δ + 1.

Determining a′(G) is a hard problem both from a theoretical and from an algo-

rithmic point of view. Even for the simple and highly structured class of complete

graphs, the value of a′(G) is still not determined exactly. The difficulty in deter-

mining a′(G) for complete graphs could be observed by its equivalence to the Perfect

1-factorization Conjecture (This long standing conjecture by Kotzig and others states

that, For any n ≥ 2, K2n can be decomposed into 2n− 1 perfect matchings such that

the union of any two matchings forms a hamiltonian cycle of K2n.). It has also been

shown by Alon and Zaks [3] that determining whether a′(G) ≤ 3 is NP-complete for

an arbitrary graph G.

3 Our Work

The following are some of our main results:

1. From a result of Burnstein [4], it follows that any subcubic graph can be acycli-

cally edge colored using at most 5 colors. We proved that any non-regular

subcubic graph can be acyclically colored using only 4 colors.

2. Muthu,Narayanan and Subramanian [9] proved that a′(G) ≤ Δ+1 for outerpla-

nar graphs which is a subclass of 2-degenerate graphs and posed the problem of

proving the conjecture for 2-degenerate graphs as an open problem. We proved

that 2-degenerate graphs are Δ + 1 colorable.

3. Fiedorowicz, Hauszczak and Narayanan [7] gave an upper bound of 2Δ + 29 for

planar graphs. Independently Hou, Wu, GuiZhen Liu and Bin Liu [8] gave an

upper bound of max(2Δ− 2,Δ + 22). We improve this upper bound to Δ + 12.

In [7], they also gave an upper bound of Δ + 6 for triangle free planar graphs.

We improve the bound to Δ + 3.

4. We have also worked on lower bounds. Alon et. al. [2], along with the acyclic

edge coloring conjecture, also made an auxiliary conjecture stating that Com-

plete graphs of 2n vertices are the only class of regular graphs which require
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Δ+2 colors. We disproved this conjecture by showing infinite classes of regular

graphs other than Complete Graphs which require Δ + 2 colors.

Apart from the above mentioned results, our work also contributes to the acyclic

edge coloring literature by introducing new techniques like Recoloring, Color Ex-

change (exchanging colors of adjacent edges), circular shifting of colors on adjacent

edges (derangement of colors). These techniques turn out to be very useful in proving

upper bounds on the acyclic edge chromatic number.
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The standard version of graph coloring is the problem of partitioning the vertices

of a graph G into parts so that each part induces an independent set. The minimum

number of parts in any such partition is known as the chromatic number of G and

is denoted by �(G). Determining �(G) has been a very important and well-studied

problem in graph theory and has motivated lots of research in structural graph theory.

See [6], [10] and [11] for a comprehensive introduction to graph coloring. In particular,

the book authored by Jensen and Toft [10] is a very good reference for a detailed

introduction to coloring and its variants. Also, tight and exact upper bounds have

been obtained for various special classes like planar graphs, partial k-trees, etc.

The algorithmic version of this problem is a notoriously hard problem and has

also played an important role in the development of efficient algorithms and also in

the field of computational complexity. It is one of the first few problems which were

shown to be NP-complete and recently it has also been shown [12] to be unlikely to

approximate within a multiplicative factor of n1−� (for every � > 0).

Grünbaum [9] proposed a variant of vertex coloring where we also require, for every

pair (Vi, Vj) of parts, that the induced subgraph G[Vi ∪ Vj] is a forest. The minimum

number of colors used in any such coloring is known as the acyclic chromatic number

of G and is denoted by a(G). However, while �(G) ≤ Δ(G) + 1 always, a(G) can be

as large as Δ(G)4/3/ log Δ(G) even for bipartite graphs for which �(G) = 2 (see [2]).

A more restrictive variant is one in which we require that the union of any two

color classes induces a star forest. The associated invariant star chromatic number,

denoted by �s(G), is bounded by O(Δ3/2) and can become as large as Δ3/2/ log Δ,

again even if �(G) = 2 ([2]). Another variant is the distance-2 coloring in which any

two vertices sharing a common neighbor are colored differently.

Each of these three variants helps to model practical problems arising in several

applications. For example, acyclic coloring models a partitioning problem arising in

the computation of Hessians and Jacobians [8]. The distance-2 coloring is closely
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related to the span of a radio-coloring of a graph [7]. Radiocoloring of a graph has

applications in mobile communication. One can also look at the edge analogues of

these colorings. For example, an acyclic edge coloring of G is the edge analogue of

the acyclic vertex coloring.

Recently, Aravind and Subramanian generalized these (vertex and edge) coloring

notions to a generic coloring notion in [2] and [4]. Also results on upper bounds (and

their tightness) on the associated chromatic numbers and chromatic indices were

obtained. As a result, we not only obtain the above given bounds as special cases of

a more general result, we also obtain bounds (several of them tight also) for many

new types of constrained colorings.

Given j and a family ℱ of connected j-colorable graphs, a (j,ℱ)-coloring is a

proper vertex coloring ofG in which the union of any j color classes induces a subgraph

which is free of any isomorphic copy of any F ∈ ℱ . The minimum number of colors

used in any such coloring is known as the (j,ℱ)-chromatic number of G and is denoted

by �j,ℱ(G). Upper bounds on this number in terms of maximum degree Δ(G) were

obtained in [2]. By specializing on j and ℱ , we obtain bounds on various constrained

colorings with restrictions such as union of any 3 color classes induces a partial k-tree

or union of any 2 color classes induces a planar subgraph. For example, using our

general bound, it can be shown that a first type of coloring exists using O(Δ
3k+1
3k−3 )

colors and a second type of coloring exists using O(Δ
8
7 ) colors.

In fact, when j = 2, one can improve (as shown in [3]) the previous upper bound

(of [2]) to O(Δ
m

m−1 ) colors, where m is the minimum number of edges in any member

of ℱ . Also, in [2], the tightness (upto a polylogarithmic factor) of this bound was also

established. The proofs of the upper and lower bounds were based on probabilistic

arguments. In particular, it was shown in [2] that O(Δ8/7) colors suffice to obtain a

proper coloring in which the union of any two color classes induces a partial 2-tree.

In [4], tight upper bounds were obtained for constrained edge colorings. The

corresponding invariant is known as (j,ℱ)-chromatic index and is denoted by �′j,ℱ(G).

Using our bounds, it follows that O(d) colors suffice for proper edge colorings with

each of the following restrictions such as (i) the union of any 3 color classes should

be an outerplanar graph, (ii) the union of any 4 color classes should have treewidth

at most 2, (iii) the union of any 5 color classes should be planar, (iv) the union of

any 16 color classes should be 5-degenerate.

These coloring notions can be used to obtain upper bounds on other invariants

like oriented chromatic numbers [3] and intersection dimensions [5].

In this talk, we will provide a brief outline of some recent results obtained by us on

the computational complexity issues of computing these restricted chromatic numbers

and associated colorings. We present both positive (that is, efficient algorithms) and
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also conditional negative results (that is, non-existence of efficient algorithms modulo

some complexity assumptions).
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