D-bounded Property in a Distanceregular Graph with $a_1=0$ and $a_2\neq 0$

Chih-wen Weng (with Yu-pei Huang, Yeh-jong Pan)

Department of Applied Mathematics
National Chiao Tung University
Taiwan

Let $\Gamma=(X,R)$ denote a finite undirected, connected graph without loops or multiple edges with vertex set X, edge set R, distance function ∂ , and diameter $D:=\max\{\partial(x,y)\mid x,y\in X\}$.

By a **pentagon**, we mean a 5-tuple $u_1u_2u_3u_4u_5$ consisting of distinct vertices in Γ such that $\partial(u_i, u_{i+1}) = 1$ for $1 \le i \le 4$ and $\partial(u_5, u_1) = 1$.

A graph Γ is said to be **distance-regular** whenever for all integers $0 \le h, i, j \le D$, and all vertices $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h = |\Gamma_i(x) \cap \Gamma_j(y)|$$

is independent of x, y.

For two vertices $x, y \in X$, with $\partial(x, y) = i$, set

$$B(x, y) := \Gamma_1(x) \cap \Gamma_{i+1}(y),$$

 $C(x, y) := \Gamma_1(x) \cap \Gamma_{i-1}(y),$
 $A(x, y) := \Gamma_1(x) \cap \Gamma_i(y).$

Note that

$$b_i := |B(x, y)| = p_{1 i+1}^i,$$

 $c_i := |C(x, y)| = p_{1 i-1}^i,$
 $a_i := |A(x, y)| = p_{1 i}^i$

are independent of x, y.

Recall that a sequence x, z, y of vertices of Γ is geodetic whenever

$$\partial(x,z) + \partial(z,y) = \partial(x,y).$$

A sequence x, z, y of vertices of Γ is **weak-geodetic** whenever

$$\partial(x,z) + \partial(z,y) \leq \partial(x,y) + 1.$$

Definition

A subset $\Delta \subseteq X$ is weak-geodetically closed if for any weak-geodetic sequence x, z, y of Γ ,

$$x, y \in \Delta \Longrightarrow z \in \Delta.$$

Weak-geodetically closed subgraphs are called *strongly closed* subgraphs in (Suzuki, On strongly closed subgraphs of highly regular graphs, European J. Combin., 16(1995), 197–220).

Definition

 Γ is said to be *i-bounded* whenever for all $x, y \in X$ with $\partial(x, y) \leq i$, there is a regular weak-geodetically closed subgraph of diameter $\partial(x, y)$ which contains x and y.

Note that a (D-1)-bounded distance-regular graph is clear to be D-bounded.

By a **parallelogram of length** i, we mean a 4-tuple xyzw consisting of vertices of Γ such that $\partial(x,y) = \partial(z,w) = 1$, $\partial(x,z) = i$, and $\partial(x,w) = \partial(y,z) = \partial(y,w) = i-1$.

Theorem

Let Γ denote a distance-regular graph with diameter $D \geq 3$, and intersection numbers $a_1 = 0$, $a_2 \neq 0$. Fix an integer $1 \leq d \leq D-1$ and suppose Γ contains no parallelograms of any length up to d+1. Then Γ is d-bounded.

Applying our main Theorem with previous results, we have

Theorem

Let Γ denote a distance-regular graph with diameter $D \geq 3$. Suppose the intersection number $a_2 \neq 0$. Fix an integer $2 \leq d \leq D-1$. Then the following two conditions (i), (ii) are equivalent:

- (i) Γ is d-bounded.
- (ii) Γ contains no parallelograms of any length up to d+1 and $b_1>b_2$.

A subset Ω of X is **weak-geodetically closed with respect to a vertex** $x \in \Omega$ if and only if

$$C(y,x)\subseteq\Omega$$
 and $A(y,x)\subseteq\Omega$ for all $y\in\Omega$.

Note that Ω is weak-geodetically closed if and only if for any vertex $x \in \Omega$, Ω is weak-geodetically closed with respect to x.

Proof of the Theorem

Known Results

Theorem

Let Γ be a distance-regular graph with diameter $D \geq 3$. Let Ω be a regular subgraph of Γ with valency γ and set $d := \min\{i \mid \gamma \leq c_i + a_i\}$. Then the following (i),(ii) are equivalent.

- (i) Ω is weak-geodetically closed with respect to at least one vertex $x \in \Omega$.
- (ii) Ω is weak-geodetically closed with diameter d.

In this case $\gamma = c_d + a_d$.

(—, Weak-geodetically closed subgraphs in distance-regular graphs, Graphs and Combinatorics, 14(1998), 275–304.)

Theorem

Let Γ be a distance-regular graph with diameter $D \geq 3$. Suppose $b_1 > b_2$, $a_2 \neq 0$, and Γ contains no parallelograms of length up to 3. Then Γ is 2-bounded. \square

(—, Weak-geodetically closed subgraphs in distance-regular graphs(Proposition 6.7), Graphs and Combinatoric, 14(1998), 275–304, and H. Suzuki, Strongly closed subgraphs of a distance-regular graph with geometric girth five(Theorem 1.1), Kyushu Journal of Mathematics, 50(2)(1996), 371–384.)

Definition

Fix a vertex $x \in X$. A pentagon $u_1u_2u_3u_4u_5$ has shape i_1, i_2, i_3, i_4, i_5 with respect to x if $i_j = \partial(x, u_j)$ for $1 \le j \le 5$.

Theorem

Let Γ be a distance-regular graph with diameter $D \geq 3$. Suppose $a_1 = 0$, $a_2 \neq 0$ and Γ contains no parallelograms of length up to d+1 for some integer $d \geq 2$. Let x be a vertex of Γ , and let $u_1u_2u_3u_4u_5$ be a pentagon of Γ such that $\partial(x,u_1)=i-1$ and $\partial(x,u_3)=i+1$ for $1\leq i\leq d$. Then the pentagon $u_1u_2u_3u_4u_5$ has shape i-1,i,i+1,i+1,i with respect to x.

(—, Weak-geodetically closed subgraphs in distance-regular graphs(Lemma 6.9), Graphs and Combinatoric, 14(1998), 275–304, and H. Suzuki, Strongly closed subgraphs of a distance-regular graph with geometric girth five(Lemma 4.1), Kyushu Journal of Mathematics, 50(2)(1996), 371–384.)

Distance to x

0 i-1 i i+1

Does not exist !!!

A. Hiraki's arguments

Lemma

Fix integers $1 \le i \le d \le D-1$, and suppose Γ does not contain parallelograms of any length up to d+1. Let x be a vertex of Γ . Then there is no pentagon of shape i, i, i, i+1 and no pentagon of shape i, i, i, i+1, i+1 with respect to x for $1 \le i \le d$. \square

Does not exist !!!

Does not exist !!!

The Construction

Definition

For any vertex $x \in X$ and any subset $\Pi \subseteq X$, define

$$[x,\Pi] := \{ v \in X \mid \text{there exists } y' \in \Pi,$$

such that the sequence x, v, y' is geodetic $\}$.

For any $x, y \in X$ with $\partial(x, y) = d$, set

$$\Pi_{xy} := \{ y' \in \Gamma_d(x) \mid B(x, y) = B(x, y') \}$$

and

$$\Delta(x,y) = [x, \Pi_{xy}].$$

It suffices to prove that

 (W_d) $\Delta(x,y)$ is weak-geodetically closed with respect to x, and (R_d) the subgraph induced on $\Delta(x,y)$ is regular with valency $a_d + c_d$.

Lemma

Fix an integer $1 \le d \le D-1$, and suppose Γ does not contain parallelograms of length up to d+1. Then for any two vertices $z, z' \in X$ such that $\partial(x, z) \le d$ and $z' \in A(z, x)$, we have B(x, z) = B(x, z').

How to show \triangle (x, y) is weak-geodetically closed with respect to x in the case $c_2>1$?

Χ

How to show Δ (x, y) is weakgeodetically closed with respect to x in the case $a_1>0$

Х

The case $a_1=0$ and $a_2>0$ is more complicate

The BB_d condition

Proposition

Fix integers $1 \le i \le d \le D-1$, and suppose Γ does not contain parallelograms of any length up to d+1. Let x be a vertex and $u_1u_2u_3u_4u_5$ be a pentagon of shape i, i-1, i, i-1, i or of shape i, i-1, i, i-1, i-1 with respect to x for $1 \le i \le d$ for $1 \le i \le d$. Then $B(x, u_1) = B(x, u_3)$.

Proposition

For any vertex $z \in \Delta(x, y) \cap \Gamma_i(x)$, where $1 \le i \le d$, we have the following (i), (ii).

- (i) $A(z,x) \subseteq \Delta(x,y)$.
- (ii) For any vertex $w \in \Gamma_i(x) \cap \Gamma_2(z)$ with B(x, w) = B(x, z), we have $w \in \Delta(x, y)$.

In particular the subgraph $\Delta(x, y)$ is weak-geodetically closed with respect to x.

B(x, w)=B(x, z)

A graph involved in the proof

Proposition

 $\Delta(x,y)$ is regular with valency $a_d + c_d$.

Idea of the proof

Since each vertex in $\Delta(x, y)$ appears in a sequence of vertices $x = x_0, x_1, \ldots, x_d$ in Δ , where $\partial(x, x_j) = j$, $\partial(x_{j-1}, x_j) = 1$ for $1 \le j \le d$, and $x_d \in \Pi_{xv}$, it suffices to show

$$a_d + c_d = |\Gamma_1(x_0) \cap \Delta(x, y)| \ge |\Gamma_1(x_1) \cap \Delta(x, y)|$$

$$\geq |\Gamma_1(x_2) \cap \Delta(x,y)| \geq \cdots \geq |\Gamma_1(x_d) \cap \Delta(x,y)| = a_d + c_d.$$

$A(x_{i\text{-}1},\,z)$

 Δ (x, y)

From the above counting, we have

$$|\Gamma_1(x_{i-1}) \setminus \Delta(x,y)| a_2 \leq |\Gamma_1(x_i) \setminus \Delta(x,y)| a_2$$

for $1 \le i \le d$.

Application of Theorem to DRG with classical parameters

Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $D \geq 3$. Γ is said to have *classical parameters* (D, b, α, β) whenever the intersection numbers of Γ satisfy

$$c_{i} = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \leq i \leq D,$$

$$b_{i} = \left(\begin{bmatrix} D \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \leq i \leq D,$$

where

$$\begin{bmatrix} i \\ 1 \end{bmatrix} := 1 + b + b^2 + \cdots + b^{i-1}.$$

Theorem

Let Γ denote a distance-regular graph with classical parameters (D,b,α,β) with b<-1 and $D\geq 4$. Suppose that Γ is D-bounded. Then

$$\beta = \alpha \frac{1 + b^D}{1 - b}.\tag{1}$$

(—, D-bounded distance-regular graphs (Theorem 4.2), European Journal of Combinatorics, 18(1997), 211–229.)

Ideal of the proof

- A regular weak-geodetically-closed of diameter i is called a subspace of rank i.
- Fix a subspace Δ of dimension i and a subspace Δ' of rank i+3.
- Let P (resp. B) be the set of subspaces of of rank i+1 (resp. i+2) containing Δ and contained in Δ' .
- Then (P, B) is a 2-(v, k, 1) design to obtain Fisher's inequality.
- The Fisher's equalities of two consecutive i become the desired identity. We need the assumption D>3 here.

Corollary

Let Γ denote a distance-regular graph with classical parameters $(D, b, \alpha, \beta), D \geq 4$ and $c_2 = 1$. Then $a_2 = a_1$ and $a_1 \neq 0$.

Conjecture

There is no distance-regular graph Γ with classical parameters $(D, b, \alpha, \beta), D \geq 4$, and $c_2 = 1$.

Remark

(See [BCN, p. 194] The Triality graph ${}^3D_{4,2}(q)$ is a distance-regular graph with classical parameters $(3,-q,q/(1-q),q^2+q),\ c_2=1$ and $a_1=a_2=q-1$. Hence the assumption $D\geq 4$ in Conjecture 0.2 is necessary. Note that The triality graph ${}^3D_{4,2}(q)$ is not 3-bounded since $b_1=b_2$.

Another Application

Definition

A distance-regular graph Γ is said to have **geometric parameters** (D, b, α) whenever it has classical parameters (D, b, α, β) , where $b \neq 1$ and

$$\beta = \alpha \frac{1 + b^D}{1 - b}.$$

(P, B) is a projective plane if DRG has geometric parameters

Lemma

Let $\Gamma = (X,R)$ denote a distance-regular graph with geometric parameters (D,b,α) and $D \geq 4$. Suppose Γ is D-bounded. Suppose Γ is not the dual polar graph $^2A_{2D-1}(-b)$, and Γ is not the Hermitian forms graph $Her_{-b}(D)$. Then $\alpha = (b-1)/2$ and -b is a power of an odd prime. \square

(—, Classical distance-regular graphs of negative type, J. Combin. Theory Ser. B, 76(1999), 93-116.)

Idea of the proof

- A regular weak-geodetically closed subgraph of diameter 2 (resp. 1) is called a **plane** (resp. **line**).
- The **shape** of a plane with respect to a vertex x is the set of distances between the vertices in the plane and x.
- Fix two vertices x, y at distance i.
- The fact that the number of planes containing y of shape {i} with respect to x is nonnegative gives a useful equality.

Count the number of planes of shape {i} with respect to x

Ideal in the proof (conti.)

- Fix a plane ω containing y of shape $\{i-1, i\}$ with respect to x. Then $\omega \cap \Gamma_{i-1}(x)$ is a disjoint union of σ lines and $\sigma \neq b^2$.
- Use (σ-b²-1)/(σ-b²)≥0 to get another useful inequality.
- Two inequalities become an equality.

Ideal in the proof (conti.)

- Fix a plane ω containing y of shape $\{i-1, i\}$ with respect to x. Then $\omega \cap \Gamma_{i-1}(x)$ is a disjoint union of σ lines and $\sigma \neq b^2$.
- Use $(\sigma b^2 1)/(\sigma b^2) \ge 0$ to get another useful inequality.
- Two inequalities become an equality.

_____ i-1 ____

X

 ω

Theorem

Let Γ denote a distance-regular graph with classical parameters (D,b,α,β) with b<-1, $D\geq 4$ and the intersection numbers $a_2\neq 0$ and $b_1>b_2$. Suppose Γ is not the dual polar graph $^2A_{2D-1}(-b)$, and Γ is not the Hermitian forms graph $Her_{-b}(D)$. Then $\alpha=(b-1)/2$, $\beta=-(1+b^D)/2$, and -b is a power of an odd prime.

In the case a2>a1=0 and c=2>1, A. Hiraki can show that in the above theorem the assumption D \geq 4 can be loosen to D \geq 3, and b=-3 is the only remaining unknown case.

Thank You for Your Attention