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Let =(X, R) denote a finite undirected, connected graph without
loops or multiple edges with vertex set X, edge set R, distance
function 0, and diameter D:=max{ d(x, y) | x,y € X}.



By a pentagon, we mean a 5-tuple ujususugus consisting of
distinct vertices in I such that O(uj, ujy1) =1 for 1 < <4 and
O(us, up) = 1.



A graph [ is said to be distance-regular whenever for all integers

0 < h,i,j <D, and all vertices x,y € X with d(x,y) = h, the
number

pi = IFi(x) NT5(y)]

Is independent of x, y.



For two vertices x, y € X, with d(x,y) =i, set

B(x,y) = Mi(x)NTia(y),
C(x,y) = T1(x)NTi_1(y),
Alx,y) = Ti(x)NTi(y).



Note that

bf’ = ‘B(X.y)
Ci -— ‘C(X.V)
dj .= ‘A(X.V)

are independent of x, y.




Recall that a sequence x, z, y of vertices of [ is geodetic whenever

O(x,2) + 0(z,y) = O(x, y).



A sequence X, z, y of vertices of [ is weak-geodetic whenever

d(x,z)+ 0(z,y) < I(x,y)+ 1.



A subset A C X is weak-geodetically closed if for any
weak-geodetic sequence x, z, y of I,

X, ye A= zec A.
Weak-geodetically closed subgraphs are called strongly closed

subgraphs in (Suzuki, On strongly closed subgraphs of highly
regular graphs, European J. Combin., 16(1995), 197-220).



[ is said to be i-bounded whenever for all x,y € X with
d(x,y) < i, there is a regular weak-geodetically closed subgraph of
diameter O(x, y) which contains x and y.

Note that a (D — 1)-bounded distance-regular graph is clear to be
D-bounded.
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By a parallelogram of length /, we mean a 4-tuple xyzw
consisting of vertices of I' such that d(x,y) = d(z, w) = 1,
d(x,z) =1, and O(x,w) =0(y,z) =0(y,w) =1 —1.




Let [ denote a distance-regular graph with diameter D > 3, and
intersection numbers ay = 0, ap # 0. Fix an integer 1 < d < D —1
and suppose [ contains no parallelograms of any length up to

d+ 1. Then T is d-bounded.
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Applying our main Theorem with previous results, we have

Let [ denote a distance-regular graph with diameter D > 3.
Suppose the intersection number a> # 0. Fix an integer

2 <d< D —1. Then the following two conditions (i), (ii) are
equivalent:

(i) T is d-bounded.

(ii) T contains no parallelograms of any length up to d + 1 and

b1 > bo.
]
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A subset 2 of X is weak-geodetically closed with respect to a
vertex x € ) if and only if

C(y,x) CQ and A(y,x) €9 for all y € Q.

Note that {2 is weak-geodetically closed if and only if for any
vertex x € 2, Q0 is weak-geodetically closed with respect to x.



Proof of the Theorem



Known Results



Let [ be a distance-regular graph with diameter D > 3. Let ) be a
regular subgraph of [ with valency ~ and set

d :=min{/i | v < c¢j+ a;}. Then the following (i), (ii) are
equivalent.

(1) Q is weak-geodetically closed with respect to at least one
vertex x € (1.

(ii) Q is weak-geodetically closed with diameter d.
In this case v = ¢4 + ay. []

(—, Weak-geodetically closed subgraphs in distance-regular
graphs, Graphs and Combinatorics, 14(1998), 275-304.)
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Let [ be a distance-regular graph with diameter D > 3. Suppose
by > by, ap # 0, and [ contains no parallelograms of length up to
3. Then T is 2-bounded. ]

(—, Weak-geodetically closed subgraphs in distance-regular
graphs(Proposition 6.7), Graphs and Combinatoric, 14(1998),
275-304, and H. Suzuki, Strongly closed subgraphs of a
distance-regular graph with geometric girth five(Theorem 1.1),
Kyushu Journal of Mathematics, 50(2)(1996), 371-384.)
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Fix a vertex x € X. A pentagon ujususugus has shape
i1, i2, 13, Ia, i5 with respect to x if ij = d(x, u;) for 1 < j <b.

x0
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Let [ be a distance-regular graph with diameter D > 3. Suppose
a1 =0, ap # 0 and I contains no parallelograms of length up to

d + 1 for some integer d > 2. Let x be a vertex of ', and let
uilpusugus be a pentagon of I' such that d(x,u;) =i — 1 and
O(x,u3) =i+ 1forl <i<d. Then the pentagon uiupususus has
shape i — 1,i,i+ 1,i+ 1,/ with respect to Xx. ]

(—, Weak-geodetically closed subgraphs in distance-regular
graphs(Lemma 6.9), Graphs and Combinatoric, 14(1998),
275-304, and H. Suzuki, Strongly closed subgraphs of a
distance-regular graph with geometric girth five(Lemma 4.1),
Kyushu Journal of Mathematics, 50(2)(1996), 371-384.)
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i+1

. 0o .. i-1
Distance to x

u,

Does not exist !!!
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A. Hiraki's arguments

Lemma

Fix integers 1 < i <d <D — 1, and suppose [ does not contain
parallelograms of any length up to d + 1. Let x be a vertex of I'.

of shape i,i,i,i +1,i+ 1 with respect to x for1 < | < d. L]



. o ... i-1 i j+1
Distance to x
Uy
u,
“s “3‘
e ...
X
Ug
u
Us u, 20
u,

Does not exist !!!
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. 0o . i-1 i i+1
Distance to x

Does not exist !!!
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The Construction

For any vertex x € X and any subset [1 C X, define
[x,[] := {v € X | there exists y" € I,

such that the sequence x, v, y’ is geodetic }.

For any x,y € X with J(x,y) = d, set

My ={y" € Ta(x) | B(x.y) = B(x.y')}

and
A(X::J/) — [X? I_IX}’]'



B(X, y)

Axy)
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It suffices to prove that
(Wy) A(x,y) is weak-geodetically closed with respect to x, and

(R4) the subgraph induced on A(x, y) is regular with valency
ad + Cd-
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L emma

Fix an integer 1 < d < D — 1, and suppose ' does not contain
parallelograms of length up to d + 1. Then for any two vertices
z,z" € X such that 9(x,z) < d and z' € A(z, x), we have
B(x, z) = B(x,Z2').
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B, 2)=B(x, Z))
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How to show A (X, y) is weak-
geodetically closed with respect to x in
the case c,>17



How to show A (X, y) is weak-
geodetically closed with respect to x in
the case a,>0

A (w,u)
connected



The case a,=0 and a,>0 is more
complicate



The BB, condition

Fix integers 1 < i <d <D —1, and suppose [ does not contain
parallelograms of any length up to d + 1. Let x be a vertex and
Uy Usuzlgls be a pentagon of shape i,i — 1,i,i — 1,i or of shape
I, —1,0,i —1,i —1 with respect tox forl < | <d forl <|<d.
Then B(x, u1) = B(x, u3).
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B(x,u,)=B(x,u;) <=
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For any vertex z € A(x,y) NTi(x), wherel < i < d, we have the
following (i), (ii).
(i) A(z,x) C A(x,y).
(ii) For any vertex w € I'j(x) NT2(z) with B(x,w) = B(x, z), we
have w € A(x, y).

In particular the subgraph A(x,y) is weak-geodetically closed with
respect to X.

B, w)=B(x, 2)
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A graph involved in the proof

0 j-1 i i+1 +2




A(x,y) is regular with valency aq + c4.
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ldea of the proof

Since each vertex in A(x, y) appears in a sequence of vertices
X = X0, X1, ...,Xd in A, where 9(x, x;) = j, d(xj—1,X;) = 1 for
1 <j <d, and xq € Iy, it suffices to show

ad + ¢ca = |I'1(x0) NA(Xx, y)| = [F1(x1) N A(x, y)

> M) N AGGY)| > - > [F1(xa) N A Y)| = 20 + ca.



AXi4y, 2)

AX,y)
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A(X,Y)

Mil S)
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From the above counting, we have

F1(xi-1) N Alx, y)faz < [T1(xi) \ A(x, y)|a2

for1 < <d.



Application of Theorem to DRG with
classical parameters



Let I = (X, R) denote a distance-regular graph with diameter
D > 3. T is said to have classical parameters (D, b, «, 3) whenever
the intersection numbers of [ satisfy

3] osiso
o (B f]) osreo

m =1+b+ b4 -+ b1
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Let [ denote a distance-regular graph with classical parameters
(D, b, o, 3) with b< —1 and D > 4. Suppose that T is
D-bounded. Then 5

1+ b

(—, D-bounded distance-regular graphs (Theorem 4.2), European
Journal of Combinatorics, 18(1997), 211-229.)
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ldeal of the proof

A regular weak-geodetically-closed of diameter i is
called a subspace of rank i.

Fix a subspace A of dimension i and a subspace A’ of
rank i+3.

Let P (resp. B) be the set of subspaces of of rank i+1
(resp. i+2) containing A and contained in A’.

Then (P, B) is a 2-(v, k, 1) design to obtain Fisher’s
inequality.

The Fisher’s equalities of two consecutive i become the
desired identity. We need the assumption D>3 here.



rank i+3
rank i+1

rank i+1
rank i
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Corollary

Let [ denote a distance-regular graph with classical parameters
(D,b,a,3), D >4 and c; = 1. Then ap = a; and a1 # 0.
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T'here is no distance-regular graph I with classical parameters
(D, b,a,3), D >4, and c; = 1.
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(See [BCN, p. 194] The Triality graph *D42(q) is a
distance-regular graph with classical parameters

(3,—9,9/(1 —q).q°+q), co=1and a; = a» = g — 1. Hence the
assumption D > 4 in Conjecture 0.2 is necessary. Note that The
triality graph D4 2(q) is not 3-bounded since by = b,.
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Another Application



A distance-regular graph I is said to have geometric parameters
(D, b, &) whenever it has classical parameters (D, b, a, 3), where
b # 1 and

1+ b°

0=« R
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(P, B) is a projective plane if DRG has geometric parameters

C::\/h

A

-

rank i+3
rank i+1

rank i+1
rank i

53



L emma

Let I = (X, R) denote a distance-regular graph with geometric
parameters (D, b, o) and D > 4. Suppose ' is D-bounded.
Suppose I is not the dual polar graph 2A>p_1(—b), and T is not

the Hermitian forms graph Her_p(D). Then o« = (b—1)/2 and —b
is a power of an odd prime. []

(—, Classical distance-regular graphs of negative type, J. Combin.
Theory Ser. B, 76(1999), 93-116.)
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ldea of the proof

- A regular weak-geodetically closed subgraph of
diameter 2 (resp. 1) is called a plane (resp. line).

 The shape of a plane with respect to a vertex x Is
the set of distances between the vertices in the
plane and x.

* Fix two vertices X, y at distance I.

* The fact that the number of planes containing y of
shape {i} with respect to x is nonnegative gives a
useful equality.




Count the number of planes of shape {i} with respect to x
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ldeal in the proof (conti.)

* Fix a plane @ containing y of shape {i-1, 1}
with respect tox. Then @ N I" () is a
disjoint union of ¢ lines and g #b”.

* Use (0 -b%-1)/( 0 -b%)>0 to get another useful
inequality.

* Two inequalities become an equality.



ldeal in the proof (conti.)

* Fix a plane @ containing y of shape {i-1, i}
with respect to x. Then @ M 1" ,(x) is a
disjoint union of ¢ lines and g #b’.

e Use (0 -b?*-1)/( 0 -b?)>0 to get another useful
inequality.

* Two inequalities become an equality.






Let [ denote a distance-regular graph with classical parameters
(D, b,«, 3) with b < —1, D > 4 and the intersection numbers

ap # 0 and by > by. Suppose I is not the dual polar graph
2Arp_1(—b), and T is not the Hermitian forms graph Her_(D).
Then o = (b—1)/2, 3 = —(1+ bP)/2, and —b is a power of an
odd prime.
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In the case a2>al=0and c 2>1,
A. Hiraki can show that in the
above theorem the assumption
D>4 can be loosento D >3, and
b=-3 is the only remaining
unknown case.



Thank You for Your Attention
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