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Binary matrix for group testing

Q Let [n]:={1,2,...,n} be a set of items containing a subset P C [n],
the set of defected item.
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@ We want to collect a group {T1, T2, ..., T¢} of t tests, each test T;
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Binary matrix for group testing

Q Let [n]:={1,2,...,n} be a set of items containing a subset P C [n],
the set of defected item.

@ We want to collect a group {T1, T2, ..., T¢} of t tests, each test T;
is a subset of [n] for 1 < < t.

© We arrange such a group testing design by the following binary matrix
M.

Q Let M be the t x n binary matrix defined by

o l,jET,';
M’f‘{ 0, & T

for1<i<tandje€|n].
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Binary matrix for group testing

Q Let [n]:={1,2,...,n} be a set of items containing a subset P C [n],
the set of defected item.

@ We want to collect a group {T1, T2, ..., T¢} of t tests, each test T;
is a subset of [n] for 1 </ <t

© We arrange such a group testing design by the following binary matrix
M.

©Q Let M be the t x n binary matrix defined by

for1<i<tandje[n]

© The weight of row i in M is | T;|. The weight of column j in M is
[{kIMyj =1}
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The output of a group testing

@ Let P € FJ denote the characteristic vector of P C [n].
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@ Let P € FJ denote the characteristic vector of P C [n].
@ The map P — P is a bijection from the power set of [n] to FJ.
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The output of a group testing

@ Let P € FJ denote the characteristic vector of P C [n].
@ The map P — P is a bijection from the power set of [n] to FJ.
© We use P C P’ if P C P’, and similar for using other set notations in

vectors.
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The output of a group testing

@ Let P € FJ denote the characteristic vector of P C [n].
@ The map P — P is a bijection from the power set of [n] to FJ.

© We use P C P’ if P C P’, and similar for using other set notations in
vectors.

Q om(P):= U M; = M % P, where x is the matrix product by using
icP
Boolean sum to replace addition.
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@ Let P € FJ denote the characteristic vector of P C [n].
@ The map P — P is a bijection from the power set of [n] to FJ.

© We use P C P’ if P C P’, and similar for using other set notations in
vectors.
Q om(P):= U M; = M % P, where x is the matrix product by using
ieP
Boolean sum to replace addition.
@ oum : FJ — F} is called the output function of M.
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Example
A binary matrix to detect the infected item 3 from {1,2,3,4,5,6} :

Tests/Items | 1 2 3 4 5 6 om({3})
one | 111000 — 1
Two | 100110 — 0
Three | 01 0101 — 0
Four | 001011 — 1
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Tests/Items | 1 2 3 4 5 6 om({3})
one | 111000 — 1
Two | 100110 — 0
Three | 01 0101 — 0
Four | 001011 — 1

For the correctness of detecting we need to assume there is at most one
infected item.
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Example
A binary matrix to detect the infected item 3 from {1,2,3,4,5,6} :

Tests/Items | 1 2 3 4 5 6 om({3})
one | 111000 — 1
Two | 100110 — 0
Three | 01 0101 — 0
Four | 001011 — 1

For the correctness of detecting we need to assume there is at most one
infected item.

Both the infected sets {3,4} and {1,6} have the same output (1,1,1,1).
So it is impossible to recover the infected set from the output.
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Definition
A t x n binary matrix M is d-disjunct if for any column M, and any other

d
d columns My, ..., M;, (allowing repeat if n < d), we have M;, Z |J M;
=1
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Definition
A t x n binary matrix M is d-disjunct if for any column M, and any other

d
d columns My, ..., M;, (allowing repeat if n < d), we have M;, Z |J M;
=1

v

Definition

M is d-separable if the outputs of any sets of at most d columns are all

distinct, i.e. the restriction function oy | <4 ) injective.
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Definition
A t x n binary matrix M is d-disjunct if for any column M, and any other
d
d columns My, ..., M;, (allowing repeat if n < d), we have M;, Z |J M;
Jj=1
Definition

M is d-separable if the outputs of any sets of at most d columns are all

distinct, i.e. the restriction function oy | <4 ) injective.

An t x n d-separable matrix can be used as a non-adaptive group testing
design that contains t group tests to test n items, which can detect the
defective items from the test output if the number of defective items is
assumed not more than d.
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Definition
A t x n binary matrix M is d-disjunct if for any column M, and any other
d
d columns My, ..., M;, (allowing repeat if n < d), we have M;, Z |J M;
Jj=1
Definition

M is d-separable if the outputs of any sets of at most d columns are all

distinct, i.e. the restriction function oy | <4 ) injective.

An t x n d-separable matrix can be used as a non-adaptive group testing
design that contains t group tests to test n items, which can detect the
defective items from the test output if the number of defective items is
assumed not more than d.

A d-disjunct matrix is d-separable.

Exercise J
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Remark
@ d-disjunct matrices are also called d-cover-free families.

@ Group testing algorithms have applications in DNA library screening,
information theory, cryptography, IC debugging, etc.

© A non-adaptive group testing design is also called a Pooling design.
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To construct a group testing design ( a t x n d-disjunct matrix), the
following is considered:

Q test efficiency (n is as large as possible);
@ usability (d is as large as possible);

@ security (the rows weights are as large as possible).
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To construct a group testing design ( a t x n d-disjunct matrix), the
following is considered:

Q test efficiency (n is as large as possible);
@ usability (d is as large as possible);

@ security (the rows weights are as large as possible).

Since the sum of columns weights is the sum of rows weights, we also
want the columns weights as large as possible.
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To construct a group testing design ( a t x n d-disjunct matrix), the
following is considered:

Q test efficiency (n is as large as possible);
@ usability (d is as large as possible);

@ security (the rows weights are as large as possible).

Since the sum of columns weights is the sum of rows weights, we also
want the columns weights as large as possible.

We will see these requests do not always coincide with each other. Hence
a compromise is necessary.
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Example
The n x n identity matrix is d-disjunct for d < n.
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Example
The n x n identity matrix is d-disjunct for d < n. J

Note that the matrix obtained from a d-disjunct matrix by deleting some
columns is d-disjunct.
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Example
The n x n identity matrix is d-disjunct for d < n. J

Note that the matrix obtained from a d-disjunct matrix by deleting some
columns is d-disjunct.

Definition
A t X n d-disjunct matrix is trivial if n < t. J
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Exercise

Let S be an antichain of [N]. Then the incidence matrix of [N] and S is
1-disjunct.

(Dep. of A. Math., NCTU) Pooling design and its construction



2009 FEEAL N g EHERBEE G T

Exercise
Let S be an antichain of [N]. Then the incidence matrix of [N] and S is
1-disjunct.

Theorem

(Sperner 1928) Let S be an antichain of [N]. Then |S| < ( LNA/I2J ) .
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Exercise

Let S be an antichain of [N]. Then the incidence matrix of [N] and S is
1-disjunct.

Theorem

(Sperner 1928) Let S be an antichain of [N]. Then |S| < ( [NA/I2J ) )

Exercise

(A. J. Macula, 1996) The incidence matrix of ( [ZI] ) and ( [IIY] ) is a

d-disjunct matrix, where d < k.
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d-disjunct matrices with constant column weight w

Let M be a t x n(d, t,w) d-disjunct matrix of constant column weight w.
Theorem
(Erdbs, Frankl and Fiiredi 1982)

n(d,t,W)S(‘t/)/( VVV:11>

where v = [w/d].
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d-disjunct matrices with constant column weight w

Let M be a t x n(d, t,w) d-disjunct matrix of constant column weight w.

Theorem
(Erdbs, Frankl and Fiiredi 1982)

n(d,t,W)S(\t/)/( VVV:11>

where v = [w/d].
The equality is obtained in w = 2d by using probabilistic method (Erdds,
Frankl and Fiiredi 1985).
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Let M be a t x n(d, t,w) d-disjunct matrix of constant column weight w.
Theorem
(Erdbs, Frankl and Fiiredi 1982)

n(d,t,W)S(\t/)/( VVV:11>

where v = [w/d].
The equality is obtained in w = 2d by using probabilistic method (Erdds,
Frankl and Fiiredi 1985). We are interested in the case w = d + 1.
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d-disjunct matrices with constant column weight w

Let M be a t x n(d, t,w) d-disjunct matrix of constant column weight w.

Theorem
(Erdbs, Frankl and Fiiredi 1982)

n(d,t,W)S(\t/)/( VVV:11>

The equality is obtained in w = 2d by using probabilistic method (Erdos,
Frankl and Fiiredi 1985). We are interested in the case w = d + 1.

where v = [w/d].

The EFF theorem implies

t(t—1)

n(d,t,d+1) <

2d
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M is nondegenerate if each row of M has weight at least 2.

Theorem

Suppose M is nondegenerate. Then n(d,t,d +1) < %. Moreover

equality holds iff M is the points-blocks incidence matrix of a
2 —(t,d+1,1) design.
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M is nondegenerate if each row of M has weight at least 2.

Theorem

Suppose M is nondegenerate. Then n(d,t,d +1) < %. Moreover

equality holds iff M is the points-blocks incidence matrix of a
2 —(t,d+1,1) design.

Proof.
@ Each row has at least two 1's;
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M is nondegenerate if each row of M has weight at least 2.

Theorem

Suppose M is nondegenerate. Then n(d,t,d +1) < %. Moreover

equality holds iff M is the points-blocks incidence matrix of a
2 —(t,d+1,1) design.

Proof.
@ Each row has at least two 1's;

@ Any two columns intersect at at most 1 row (Use d-disjunct and
weight d + 1 property);
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M is nondegenerate if each row of M has weight at least 2.

Theorem

Suppose M is nondegenerate. Then n(d,t,d +1) < %. Moreover

equality holds iff M is the points-blocks incidence matrix of a
2 —(t,d+1,1) design.

Proof.
@ Each row has at least two 1's;
@ Any two columns intersect at at most 1 row (Use d-disjunct and
weight d + 1 property);
© Any two rows intersect at at most 1 column;
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M is nondegenerate if each row of M has weight at least 2.

Theorem

Suppose M is nondegenerate. Then n(d,t,d +1) < %. Moreover

equality holds iff M is the points-blocks incidence matrix of a
2 —(t,d+1,1) design.

Proof.
@ Each row has at least two 1's;

@ Any two columns intersect at at most 1 row (Use d-disjunct and
weight d + 1 property);
© Any two rows intersect at at most 1 column;

Q n(d, t,d+1)( d—2i- 1 ) < < ; ) (Counting elements in < [é] )

which are contained in some column).

O]

v

ZEL (Dep. of A. Math., NCTU) Pooling design and its construction December 6, 2009 11 / 36



2009 FHERRE FEHERBEE T T
Theorem

Ifn(d,t,d+1)>t—1 then n(d,t,d +1) < E )), in particular
t>d(d+1).
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Theorem
Ifn(d,t,d+1)>t—1 then n(d,t,d + 1) < % in particular
t>d(d+1).

Proof.

This is true if M is nondegenerate. Assume M is degenerate.
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Theorem
Ifn(d,t,d+1)>t—1 then n(d,t,d + 1) < % in particular
t>d(d+1).

Proof.

This is true if M is nondegenerate. Assume M is degenerate. Induction on
t.
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Theorem

Ifn(d,t,d+1)>t—1 then n(d,t,d + 1) < % in particular
t>d(d+1).

Proof.

This is true if M is nondegenerate. Assume M is degenerate. Induction on
t. Hence after rows permutation and columns permutation,

M = < I l\?l’ ) , and by induction hypothesis we have
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Theorem

Ifn(d,t,d+1)>t—1 then n(d,t,d + 1) < % in particular
t>d(d+1).

Proof.

This is true if M is nondegenerate. Assume M is degenerate. Induction on
t. Hence after rows permutation and columns permutation,

M = < : l\?l’ ) , and by induction hypothesis we have

(t—1)(t—2)
N )

- t(t—1)—2(t—1)

- d(d +1)
t(t—1)—2d(d+1)+2
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We have just shown
Theorem

If n(d,t,d+1)>t—1 then n(d, t,d +1) < %, in particular
t>d(d+1).
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We have just shown
Theorem

Ifn(d,t,d+1)>t—1 then n(d,t,d +1) < ;Efj;ll)), in particular
t>d(d+1).

Problem
Find a t x n(d, t,d + 1) d-disjunct matrix of weight d + 1 with

t(t—1)

_— d 1)< t—2.
d(d+1)<n( Jt,d+1) <t

Note that this matrix is trivial d-disjunct in our definition, but it does not
come by truncation of columns from a nontrivial constant weight
d-disjunct matrix.
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We have seen that

Theorem

Ifn(d,t,d+1) >t —1 then n(d,t,d +1) < %, in particular
t>d(d+1).
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We have seen that

Theorem

Ifn(d,t,d+1) >t —1 then n(d,t,d +1) < ;EE/-Fll))’ in particular
t>d(d+1).

Then for t = d(d + 1) we have

Corollary
n(d,d(d+1),d+1)<d(d+1)—1.
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We have seen that

Theorem
Suppose M is nondegenerate. Then n(d,t,d + 1) < dﬁ(‘%lll).
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We have seen that

t(t—1)

d(dt1)-

Theorem
Suppose M is nondegenerate. Then n(d,t,d + 1) < J

Then for t = (d + 1)? we have

Corollary
Suppose M is nondegenerate. Then n(d,(d+1)?,d+1) < (d+1)(d+ 2)J
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We have just shown

Corollary
Suppose M is nondegenerate. Then n(d,(d+1)%,d+1) < (d+1)(d+ 2)J

The following example gives the equality.
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We have just shown

Corollary
Suppose M is nondegenerate. Then n(d,(d+1)%,d+1) < (d+1)(d+ 2)J

The following example gives the equality.
Example

(2—(g° g,1) design) Let q be a prime power. The affine plane Fg over
Fq has g? points and g2 + q lines.
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Corollary
Suppose M is nondegenerate. Then n(d,(d+1)%,d+1) < (d+1)(d+ Z)J

The following example gives the equality.
Example

(2—(g° g,1) design) Let q be a prime power. The affine plane Fg over
Fq has g° points and g? + q lines. Of course any line has g points and any
two lines intersect at at most 1 point.
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We have just shown

Corollary
Suppose M is nondegenerate. Then n(d,(d+1)%,d+1) < (d+1)(d+ Z)J

The following example gives the equality.

Example

(2—(g° g,1) design) Let q be a prime power. The affine plane Fg over
Fq has g° points and g? + q lines. Of course any line has g points and any
two lines intersect at at most 1 point. Hence the points-lines incidence
matrix is t X n d-disjunct with with constant weight w, where t = ¢°,
n=qg*>+qgand w=q=d+ 1 satisfy

n=q*+q=(d+1)(d+2).
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i 2009 FEFEMH A T ETERBHRZTFET
We have just shown

Corollary
Suppose M is nondegenerate. Then n(d,(d+1)%,d+1) < (d+1)(d+ Z)J

The following example gives the equality.

Example

(2—(g° g,1) design) Let q be a prime power. The affine plane Fg over
Fq has g° points and g? + q lines. Of course any line has g points and any
two lines intersect at at most 1 point. Hence the points-lines incidence
matrix is t X n d-disjunct with with constant weight w, where t = ¢°,
n=qg*>+qgand w=q=d+ 1 satisfy

n=q*+q=(d+1)(d+2).

V.

The first g which is not a prime power is when ¢ = 6 = d + 1. In this case
the equality does not hold.
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Affine plane and projective plane

@ In general for any positive integer r, prime power or not, we can
define affine plane using the language of designs.
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@ In general for any positive integer r, prime power or not, we can
define affine plane using the language of designs.

@ A projective plane of order ris a 2-(r?> +r +1,r 4+ 1,1) design.
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Affine plane and projective plane

@ In general for any positive integer r, prime power or not, we can
define affine plane using the language of designs.

@ A projective plane of order ris a 2-(r?> +r +1,r 4+ 1,1) design.
© An affine plane of order r is a 2-(r?,r, 1) design.
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Affine plane and projective plane

@ In general for any positive integer r, prime power or not, we can
define affine plane using the language of designs.

@ A projective plane of order ris a 2-(r?> +r +1,r 4+ 1,1) design.
© An affine plane of order r is a 2-(r?,r, 1) design.

@ It is known that there is a projective plane of order r if and only if
there is an affine plane of order r.
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Affine plane and projective plane

@ In general for any positive integer r, prime power or not, we can
define affine plane using the language of designs.

@ A projective plane of order ris a 2-(r?> +r +1,r 4+ 1,1) design.
© An affine plane of order r is a 2-(r?,r, 1) design.

@ It is known that there is a projective plane of order r if and only if
there is an affine plane of order r.

© The points and lines structure in F2 gives an affine plane of order
p q 8 p q
when g is a prime power.
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Affine plane and projective plane

@ In general for any positive integer r, prime power or not, we can
define affine plane using the language of designs.

@ A projective plane of order ris a 2-(r?> +r +1,r 4+ 1,1) design.

© An affine plane of order r is a 2-(r?,r, 1) design.

@ It is known that there is a projective plane of order r if and only if
there is an affine plane of order r.

© The points and lines structure in Fg gives an affine plane of order g
when g is a prime power.

@ The existence of finite projective planes of other orders is an open
question.

£EL (Dep. of A. Math., NCTU) Pooling design and its construction December 6, 2009 17 / 36



2009 FHEZRE FEHERBEE T T
Affine plane and projective plane

@ In general for any positive integer r, prime power or not, we can
define affine plane using the language of designs.

@ A projective plane of order ris a 2-(r?> +r +1,r 4+ 1,1) design.

© An affine plane of order r is a 2-(r?,r, 1) design.

@ It is known that there is a projective plane of order r if and only if
there is an affine plane of order r.

© The points and lines structure in Fg gives an affine plane of order g
when g is a prime power.

@ The existence of finite projective planes of other orders is an open
question.

@ The case r = 6 has been ruled out by Bruck-Ryser-Chowla theorem.
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Affine plane and projective plane

@ In general for any positive integer r, prime power or not, we can
define affine plane using the language of designs.

@ A projective plane of order ris a 2-(r?> +r +1,r 4+ 1,1) design.
© An affine plane of order r is a 2-(r?,r, 1) design.
o

It is known that there is a projective plane of order r if and only if
there is an affine plane of order r.

© The points and lines structure in Fg gives an affine plane of order g
when g is a prime power.

@ The existence of finite projective planes of other orders is an open
question.

@ The case r = 6 has been ruled out by Bruck-Ryser-Chowla theorem.

© The next case r = 10 has been ruled out by massive computer
calculations.
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Affine plane and projective plane

@ In general for any positive integer r, prime power or not, we can
define affine plane using the language of designs.

@ A projective plane of order ris a 2-(r?> +r +1,r 4+ 1,1) design.
© An affine plane of order r is a 2-(r?,r, 1) design.
o

It is known that there is a projective plane of order r if and only if
there is an affine plane of order r.

© The points and lines structure in Fg gives an affine plane of order g
when g is a prime power.

@ The existence of finite projective planes of other orders is an open
question.

@ The case r = 6 has been ruled out by Bruck-Ryser-Chowla theorem.

© The next case r = 10 has been ruled out by massive computer
calculations.

© There is nothing more known, in particular r = 12 is still open.
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Lines arrangement of a set P

Let P be a set of m x u elements. We call an element of P a point, and a
u-subset of P a line.

Problem

Find a class B of lines in P such that |B| > |P| and any two lines in B
have at most one point of intersection.
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Lines arrangement of a set P

Let P be a set of m x u elements. We call an element of P a point, and a
u-subset of P a line.

Problem

Find a class B of lines in P such that |B| > |P| and any two lines in B
have at most one point of intersection.

Note that the incidence matrix of P and B forms a nontrivial
(u — 1)-disjunct matrix of constant weight u.
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An example with |P| =6 x 6
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Designs, difference sets, finite geometries, probability methods, brute force
are used in the construction d-disjunct matrices.
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Designs, difference sets, finite geometries, probability methods, brute force
are used in the construction d-disjunct matrices.

We will present a systematic way to realize the above example of Wu with
36 points and 37 lines, each line weight 6 and any two lines intersecting at
at most 1 points.

We also construct m(g + 1) + 1 lines in a point set of m(q + 1) points,
such that each line has weight g + 1 and any two lines intersecting at at
most 1 points, where m > 2q — 1.
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Forward difference property

@ Let g be a prime power and m > g be an integer.
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Forward difference property

@ Let g be a prime power and m > g be an integer.

@ Let Fy:={0,a%a',..., 3972} denote the finite field of q elements,
where a is a generator of the cyclic multiplication group
Fy = Fq —{0}.
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Forward difference property

@ Let g be a prime power and m > g be an integer.

@ Let Fy:={0,a%a',..., 3972} denote the finite field of q elements,
where a is a generator of the cyclic multiplication group
Fy = Fq —{0}.

@ Let Z, :=1{0,1,...,m— 1} be the addition group of integers modulo
m. We use the order of integers to order the elements in Z,, e.g.

0<1.
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Forward difference property

© Let g be a prime power and m > g be an integer.

Q Let F,:={0,a% al,...,a972} denote the finite field of g elements,
where a is a generator of the cyclic multiplication group
Fy = Fq —{0}.

@ Let Z, :=1{0,1,...,m— 1} be the addition group of integers modulo
m. We use the order of integers to order the elements in Z,, e.g.
0<1.

© Asubset T C Zp, x Fq is said to have the forward difference distinct
property in Zpm X Fq if the set

Dr = {(.y) ~ (i:x) | (i:). (.y) € T with i <}

consists of | elements.

TI(TI=1)
2
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The Set ,, T,
Let » Ty € Zm x F4 be defined by

mTq=1{(i,a) | i€ Zm0<i<qg-—1}.
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The Set ,, T,
Let »Tq C Zpy x Fg be defined by

mTq=1{(i,a) | i€ Zm0<i<qg-—1}.

012 g—1 m—1

(Dep. of A. Math., NCTU) Pooling design and its construction December 6, 2009 22 / 36



2009 FHEZRE FEHERBEE T T
A preview of the finial result

00 oo
392
a° /‘
%%
012 - g—1gq m-—1

Lines in Z,, X (Fq U {o0})
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The Set 575
For g =5, a=2,
515 = {(07 1)7 (17 2)7 (2’ 4)7 (37 3)7 (47 1)}
and
Diry ={ (1,1),(1,2),(1,4),(1,3)

(2,3),(2,1),(2,2)

(3,2),(3,4)

(4,0) }.
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The Set 5 T5
For g =5, a=2,

575 = {(07 1)7 (17 2)7 (2’ 4)7 (37 3)7 (47 1)}
and

D5T5

I
—

Since |D, 1,| = 10, the set 5 T5 has the forward difference distinct property
in Z5 X F5.
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m T4 has the forward difference distinct property

Theorem
The set ,, T4 has the forward difference distinct property in Zpm x Tq. J
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m T4 has the forward difference distinct property

Theorem
The set ,, T4 has the forward difference distinct property in Zpm x Tq.

Proof.

Given any pair (c,d) € Zn X Fq, solve the equations
(Ca d) = (J?a]) - (i’ai)

for0<i<j<qg-1.
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m T4 has the forward difference distinct property

Theorem
The set ,, T4 has the forward difference distinct property in Zpm x Tq.

Proof.

Given any pair (c,d) € Zn X Fq, solve the equations
(Ca d) = (./aa]) - (i’ai)

for0<i<j<g—1. Notethatl < c < qg—1 to have a solution.
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m T4 has the forward difference distinct property

Theorem
The set ,, T4 has the forward difference distinct property in Zpm x Tq.

Proof.
Given any pair (c,d) € Zn X Fq, solve the equations
(Ca d) = (./73]) - (i’ai)

for0<i<j<g—1. Notethat1l < c < qg—1 to have a solution. If
c=q—1thenj=qg—1and=0.
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m T4 has the forward difference distinct property

Theorem
The set ,, T4 has the forward difference distinct property in Zpm x Tq.

Proof.

Given any pair (c,d) € Zn X Fq, solve the equations
(Ca d) = (./73]) - (i’ai)

for 0 <i<j<qg-—1. Notethat 1 < c < g—1 to have a solution. If
c=qg—1thenj=qg—1andi=0.If c #qg—1 then
a=d/(@"—-1)=d/(a—1)and j=c+.
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m T4 has the forward difference distinct property

Theorem
The set ,, T4 has the forward difference distinct property in Zpm x Tq.

Proof.

Given any pair (c,d) € Zn X Fq, solve the equations
(Ca d) = (./73]) - (’7 ai)

for 0 <i<j<qg-—1. Notethat 1 < c < g—1 to have a solution. If
c=qg—1thenj=qg—1andi=0.If c #qg—1 then

a'=d/(ad7" —1)=d/(a° — 1) and j = c + i. In each case the pair
(i,a"), (j, &) is unique determined by the element (c,d) € Z, x Fy. O
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Difference Property

A subset T C Zp, x F4 is said to have the difference distinct property in
Zm % Fgq if the set —D7 U Dt consists of | T|(|T| — 1) elements.
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Difference Property

A subset T C Zp, x F4 is said to have the difference distinct property in
Zm % Fgq if the set —D7 U Dt consists of | T|(|T| — 1) elements.

From the structure of D, 1, we find (0,x) ¢ —D, 1, U D, 1, for any
x € Fq4. This property will be used later.
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(
(
(
(

Non-example

We have seen
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Non-example

We have seen

Dyry ={ (1,1),(1,2),(1,4),(1,3)
2,3),(2,1),(2,2)
3,2),(3,4)

4,0) }.

—~ o~ o~ —~

Hence

,(4,3),(4,1),(4,2)
1(3,4),(3,3)
Y (27 1)

}.

_D5T5 :{ (4’4
(3,2
(2,3
(1,0

~— ~—r ' —
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Non-example

We have seen

Diry ={ (1,1),(1,2),(1,4),(1,3)
(2,3),(2,1),(2,2)
(3,2),(3,4)
(4,0) }.

Hence

-D;ry ={ (4,4),(4.3),(41),(42)
(3.2),(3,4),(3,3)
(2,3),(2,1)
(1,0) }.

Since | — D, 7, U D, 1,| = 16 # 20, the set 5 T5 does not have the difference
distinct property in Zs X Fs.
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Example

Doty ={ (1,1),(1,2),(1,4),(1,3)
(2,3),(2,1),(2,2
(3,2), (3,
(4.0) }
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Example

Dery ={ (1,1),(1,2),(1,4),(1,3)
2,3),(2,1), (2,2
3,2),(3,4)

4,0) }.

Hence considering as the negative in Zg X F5, we have

—~ o~ o~ —~

—HeTs :{ (574)7(573)7(571)7(572)
(4,2),(4,4),(4,3)
(3,3),(3,1)
(2,0) }.

Since | — D, 1, U D, 1,| = 20 now, the set ¢ T5 has the difference distinct
property in Zg X Fs.

%53 (Dep. of A. Math., NCTU) Pooling design and its construction
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Problem

Determine the prime power integer g such that with a suitable choice of a

generator a € Fg, the set 41T, has the difference distinct property in
Zq_l,_l X Fq.
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2009 FHELWHT FETERBZEEFE
Problem

Determine the prime power integer g such that with a suitable choice of a

generator a € Fg, the set 41T, has the difference distinct property in
Zq+1 X Fq.

By direct computing by hands, we find the above statement is true for
g =2,4,5 and is false for g = 3,7 (First two primes in 4k + 3 form).
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Problem

Determine the prime power integer g such that with a suitable choice of a

generator a € Fg, the set 41T, has the difference distinct property in
ZCH—I X Fq.

By direct computing by hands, we find the above statement is true for
g =2,4,5 and is false for g = 3,7 (First two primes in 4k + 3 form).

Example

(The case g = 3) Note that

4T3 = {(07 1)7 (17 2)’ (27 1)}a
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2009 FHELWHT FETERBZEEFE
Problem

Determine the prime power integer g such that with a suitable choice of a

generator a € Fg, the set 41T, has the difference distinct property in
ZCH—I X Fq.

By direct computing by hands, we find the above statement is true for
g =2,4,5 and is false for g = 3,7 (First two primes in 4k + 3 form).

Example

(The case g = 3) Note that

4T3 = {(07 1)7 (17 2)’ (27 1)}a
D4T3 {(1’1)7(172)7(27 0)}7

v
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Problem

Determine the prime power integer g such that with a suitable choice of a

generator a € Fg, the set 41T, has the difference distinct property in
ZCH—I X Fq.

By direct computing by hands, we find the above statement is true for
g =2,4,5 and is false for g = 3,7 (First two primes in 4k + 3 form).

Example

(The case g = 3) Note that

4T3 = {(071)7(172)’(271)}a
D4T3 {(1’1)7(172)7(270)}7
- D4T3 {(372)7(37 1)7(270)}'
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Problem
Determine the prime power integer g such that with a suitable choice of a

generator a € Fg, the set 41T, has the difference distinct property in
Zq+1 X Fq.

By direct computing by hands, we find the above statement is true for
g =2,4,5 and is false for g = 3,7 (First two primes in 4k + 3 form).
Example

(The case g = 3) Note that

4T3 = {(071)7(172)’(271)}a
D4T3 = {(1’1)7(172)7(270)}7
- D4T3 = {(372)7(37 1)7(270)}'

Hence the set 4 T3 does not have the difference distinct property in
Z4 X F3.
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2q—1 I q has the difference distinct property

Theorem

For m > 2q — 1, the set , T, has the difference distinct property in
Lm x Tg.
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2q—1 I q has the difference distinct property

Theorem

For m > 2q — 1, the set , T4 has the difference distinct property in
Lm x Tg.

Proof.

By the theorem in the last page we have |D, 1.| = |—D,1,| = q(q —1)/2.

&Y (Dep. of A. Math., NCTU)

Pooling design and its construction December 6, 2009 30/ 36



2009 FEEAL N g EHERBEE G T

2q—1 I q has the difference distinct property

Theorem
For m > 2q — 1, the set , T4 has the difference distinct property in
Lm x Tg.

Proof.

By the theorem in the last page we have |D, 1.| = |—D,1,| = q(q —1)/2.
The first coordinate of an element in D, 1, runs from 1 to g — 1, and
the first coordinate of an element in —D, 7, fromm+1—qtom—1.
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2q—1 I q has the difference distinct property

Theorem
For m > 2q — 1, the set , T4 has the difference distinct property in
Lm x Tg.

Proof.

By the theorem in the last page we have |D, 1.| = |—D,1,| = q(q —1)/2.
The first coordinate of an element in D, 1, runs from 1 to g — 1, and
the first coordinate of an element in —D, 7, fromm+1—qtom—1.
The assumption m > 2q — 1 implies —D, 7, D, 7, = 0. O

v
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Lines with any two intersecting in at most a point

Theorem

Suppose that , Tq C Zm % Fq has the difference distinct property in

Zm X Fq. Set B={u+m Tq | u€Zmx Fg}. Then [LNL'| <1 for any
distinct L, L' € B.
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Lines with any two intersecting in at most a point

Theorem

Suppose that , Tq C Zm % Fq has the difference distinct property in

Zm X Fq. Set B={u+m Tq | u€Zmx Fg}. Then [LNL'| <1 for any
distinct L, L' € B.

Proof.
Routine. [l

HEX
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Lines with any two intersecting in at most a point

Theorem

Suppose that , Tq C Zm % Fq has the difference distinct property in
Zm X Fq. Set B={u+m Tq | u€Zmx Fg}. Then [LNL'| <1 for any
distinct L, L' € B.

Proof.
Routine. [l

Note that there are mq lines and mq points in Z,, X Fq, and a line has
q = | T| points with g different first coordinates.
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Lines with any two intersecting in at most a point

Theorem

Suppose that , Tq C Zm % Fq has the difference distinct property in
Zm X Fq. Set B={u+m Tq | u€Zmx Fg}. Then [LNL'| <1 for any
distinct L, L' € B.

Proof.
Routine. [l

Note that there are mq lines and mq points in Z,, X F,, and a line has
q = | T| points with g different first coordinates. Apparently more lines
can be added to B still having the conclusion of the above theorem, for
example, adding vertical lines to B.
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq| u€Zmx Fq} intersect at at most one point.
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq| u€Zmx Fq} intersect at at most one point.

Since (0,x) ¢ =D, 1, UD, 1,, we have LN ((0,x) 4 L) = 0 for any
nonzero x € Fg and L € B.
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq| u€Zmx Fq} intersect at at most one point.

Since (0,x) ¢ =D, 1, UD, 1,, we have LN ((0,x) 4 L) = 0 for any
nonzero x € Fg and L € B. Then B is partitioned into m classes with each
class consisting of parallel lines (non-intersecting lines).
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq | u€Znx Fq} intersect at at most one point.

Since (0,x) ¢ =D, 1, U D, 1,, we have LN ((0,x) 4 L) = () for any
nonzero x € Fg and L € B. Then B is partitioned into m classes with each
class consisting of parallel lines (non-intersecting lines).

We add a common point (i, 00) to each line in a parallel class where

i € Zm is first element (in the usual order) in Z,, not appearing in the first
coordinate of any points of that line.
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq | u€Znx Fq} intersect at at most one point.

Since (0,x) ¢ =D, 1, U D, 1,, we have LN ((0,x) + L) = ( for any
nonzero x € Fg and L € B. Then B is partitioned into m classes with each
class consisting of parallel lines (non-intersecting lines).

We add a common point (i, 00) to each line in a parallel class where

i € Zm is first element (in the usual order) in Z,, not appearing in the first
coordinate of any points of that line. This forms a new set B’ of Lines
with underground point set Zp, x (Fq U {o0}).
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq | u€Znx Fq} intersect at at most one point.

Since (0,x) ¢ =D, 1, U D, 1,, we have LN ((0,x) + L) = ( for any
nonzero x € Fg and L € B. Then B is partitioned into m classes with each
class consisting of parallel lines (non-intersecting lines).

We add a common point (i, 00) to each line in a parallel class where

i € Zm is first element (in the usual order) in Z,, not appearing in the first
coordinate of any points of that line. This forms a new set B’ of Lines
with underground point set Zp, x (Fq U {oc0}). Note that any two distinct
lines in B’ intersect in at most one point too.
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Vertical Lines and infinite line

Set V; ={(i,j)|j€ FgU{oo} } for 0 <i<m—1,and V; is called the
ith vertical line. Set H = {(i,00) | 0 < i < q} (here assuming m > q),
and H is called an infinite line.
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Vertical Lines and infinite line

Set V; ={(i,j)|j€ FgU{oo} } for 0 <i<m—1,and V; is called the

ith vertical line. Set H = {(i,00) | 0 < i < q} (here assuming m > q),
and H is called an infinite line.

Set B” := B ' U{H, Vo, V4,...,Vmn_1}. Then
|Zm x (FqU{oo})| = m(qg+1) and [B"| = m(q+1)+ 1.
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Conclusion

Suppose that ,, Tq C Zpy, X Fg has the difference distinct property in
Zim % Fq, for example in thecase m>2g—1orm=q+1=6.

(Dep. of A. Math., NCTU) Pooling design and its construction December 6, 2009

34 /36



2009 FHELWHT FETERBZEEFE
Conclusion

Suppose that ,, Tq C Zpy, X Fg has the difference distinct property in

Zm % Fgq, for example in the case m >2qg—1orm=q+1=06. Let M be
the incidence matrix of Zp, x (Fg U {o0}) and B”. Then M is a nontrivial
g-disjunct matrix with m(q + 1) rows and constant column weight g + 1.

Note that in our construction each row has weight at least
g+1=|nTgl+1.
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A Review of our result

00 oo
392
a° /‘
%%
012 - g—1gq m-—1

Lines in Z,, X (Fq U {o0})
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The end

Thank you for your attention.
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