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Binary matrix for group testing

1 Let [n] := {1, 2, . . . , n} be a set of items containing a subset P ⊆ [n],
the set of defected item.

2 We want to collect a group {T1, T2, . . . , Tt} of t tests, each test Ti

is a subset of [n] for 1 ≤ i ≤ t.

3 We arrange such a group testing design by the following binary matrix
M.

4 Let M be the t × n binary matrix defined by

Mij =

{
1, j ∈ Ti ;
0, j 6∈ Ti

for 1 ≤ i ≤ t and j ∈ [n].

5 The weight of row i in M is |Ti |. The weight of column j in M is
|{k |Mkj = 1}.
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The output of a group testing

1 Let P ∈ F n
2 denote the characteristic vector of P ⊆ [n].

2 The map P → P is a bijection from the power set of [n] to F n
2 .

3 We use P ⊆ P′ if P ⊆ P ′, and similar for using other set notations in
vectors.

4 oM(P) :=
⋃
i∈P

Mi = M ? P, where ? is the matrix product by using

Boolean sum to replace addition.

5 oM : F n
2 → F t

2 is called the output function of M.
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Example

A binary matrix to detect the infected item 3 from {1, 2, 3, 4, 5, 6} :

Tests/Items | 1 2 3 4 5 6 oM({3})

one | 1 1 1 0 0 0 → 1
Two | 1 0 0 1 1 0 → 0
Three | 0 1 0 1 0 1 → 0
Four | 0 0 1 0 1 1 → 1



For the correctness of detecting we need to assume there is at most one
infected item.

Both the infected sets {3, 4} and {1, 6} have the same output (1, 1, 1, 1).
So it is impossible to recover the infected set from the output.
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Definition

A t × n binary matrix M is d-disjunct if for any column Mi0 and any other

d columns Mi1 , . . . , Mid (allowing repeat if n ≤ d), we have Mi0 6⊆
d⋃

j=1
Mij

Definition

M is d-separable if the outputs of any sets of at most d columns are all

distinct, i.e. the restriction function oM �

(
[n]
≤ d

)
is injective.

An t × n d-separable matrix can be used as a non-adaptive group testing
design that contains t group tests to test n items, which can detect the
defective items from the test output if the number of defective items is
assumed not more than d .

Exercise

A d-disjunct matrix is d-separable.

翁志文 (Dep. of A. Math., NCTU) Pooling design and its construction December 6, 2009 5 / 36



2009 年數學學術研討會暨中華民國數學會年會

Definition

A t × n binary matrix M is d-disjunct if for any column Mi0 and any other

d columns Mi1 , . . . , Mid (allowing repeat if n ≤ d), we have Mi0 6⊆
d⋃

j=1
Mij

Definition

M is d-separable if the outputs of any sets of at most d columns are all

distinct, i.e. the restriction function oM �

(
[n]
≤ d

)
is injective.

An t × n d-separable matrix can be used as a non-adaptive group testing
design that contains t group tests to test n items, which can detect the
defective items from the test output if the number of defective items is
assumed not more than d .

Exercise

A d-disjunct matrix is d-separable.

翁志文 (Dep. of A. Math., NCTU) Pooling design and its construction December 6, 2009 5 / 36



2009 年數學學術研討會暨中華民國數學會年會

Definition

A t × n binary matrix M is d-disjunct if for any column Mi0 and any other

d columns Mi1 , . . . , Mid (allowing repeat if n ≤ d), we have Mi0 6⊆
d⋃

j=1
Mij

Definition

M is d-separable if the outputs of any sets of at most d columns are all

distinct, i.e. the restriction function oM �

(
[n]
≤ d

)
is injective.

An t × n d-separable matrix can be used as a non-adaptive group testing
design that contains t group tests to test n items, which can detect the
defective items from the test output if the number of defective items is
assumed not more than d .

Exercise

A d-disjunct matrix is d-separable.

翁志文 (Dep. of A. Math., NCTU) Pooling design and its construction December 6, 2009 5 / 36



2009 年數學學術研討會暨中華民國數學會年會

Definition

A t × n binary matrix M is d-disjunct if for any column Mi0 and any other

d columns Mi1 , . . . , Mid (allowing repeat if n ≤ d), we have Mi0 6⊆
d⋃

j=1
Mij

Definition

M is d-separable if the outputs of any sets of at most d columns are all

distinct, i.e. the restriction function oM �

(
[n]
≤ d

)
is injective.

An t × n d-separable matrix can be used as a non-adaptive group testing
design that contains t group tests to test n items, which can detect the
defective items from the test output if the number of defective items is
assumed not more than d .

Exercise

A d-disjunct matrix is d-separable.

翁志文 (Dep. of A. Math., NCTU) Pooling design and its construction December 6, 2009 5 / 36



2009 年數學學術研討會暨中華民國數學會年會

Remark
1 d-disjunct matrices are also called d-cover-free families.

2 Group testing algorithms have applications in DNA library screening,
information theory, cryptography, IC debugging, etc.

3 A non-adaptive group testing design is also called a Pooling design.
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To construct a group testing design ( a t × n d-disjunct matrix), the
following is considered:

1 test efficiency (n is as large as possible);

2 usability (d is as large as possible);

3 security (the rows weights are as large as possible).

Since the sum of columns weights is the sum of rows weights, we also
want the columns weights as large as possible.

We will see these requests do not always coincide with each other. Hence
a compromise is necessary.
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Example

The n × n identity matrix is d-disjunct for d < n.

Note that the matrix obtained from a d-disjunct matrix by deleting some
columns is d-disjunct.

Definition

A t × n d-disjunct matrix is trivial if n ≤ t.
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Exercise

Let S be an antichain of [N]. Then the incidence matrix of [N] and S is
1-disjunct.

Theorem

(Sperner 1928) Let S be an antichain of [N]. Then |S | ≤
(

N
bN/2c

)
.

Exercise

(A. J. Macula, 1996) The incidence matrix of

(
[N]
d

)
and

(
[N]
k

)
is a

d-disjunct matrix, where d < k .
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d-disjunct matrices with constant column weight w

Let M be a t × n(d , t, w) d-disjunct matrix of constant column weight w .

Theorem

(Erdös, Frankl and Füredi 1982)

n(d , t, w) ≤
(

t
v

)
/

(
w − 1
v − 1

)
,

where v = dw/de.

The equality is obtained in w = 2d by using probabilistic method (Erdös,
Frankl and Füredi 1985). We are interested in the case w = d + 1.

The EFF theorem implies

n(d , t, d + 1) ≤ t(t − 1)

2d
.
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M is nondegenerate if each row of M has weight at least 2.

Theorem

Suppose M is nondegenerate. Then n(d , t, d + 1) ≤ t(t−1)
d(d+1) . Moreover

equality holds iff M is the points-blocks incidence matrix of a
2− (t, d + 1, 1) design.

Proof.
1 Each row has at least two 1’s;

2 Any two columns intersect at at most 1 row (Use d-disjunct and
weight d + 1 property);

3 Any two rows intersect at at most 1 column;

4 n(d , t, d + 1)

(
d + 1

2

)
≤
(

t
2

)
(Counting elements in

(
[t]
2

)
which are contained in some column).
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Theorem

If n(d , t, d + 1) ≥ t − 1 then n(d , t, d + 1) ≤ t(t−1)
d(d+1) , in particular

t ≥ d(d + 1).

Proof.

This is true if M is nondegenerate. Assume M is degenerate. Induction on
t. Hence after rows permutation and columns permutation,

M =

(
∗ 0
∗ M ′

)
, and by induction hypothesis we have

n − 1 ≤ (t − 1)(t − 2)

d(d + 1)

≤ t(t − 1)− 2(t − 1)

d(d + 1)

<
t(t − 1)− 2d(d + 1) + 2

d(d + 1)

≤ t(t − 1)

d(d + 1)
− 1.
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We have just shown

Theorem

If n(d , t, d + 1) ≥ t − 1 then n(d , t, d + 1) ≤ t(t−1)
d(d+1) , in particular

t ≥ d(d + 1).

Problem

Find a t × n(d , t, d + 1) d-disjunct matrix of weight d + 1 with

t(t − 1)

d(d + 1)
< n(d , t, d + 1) ≤ t − 2.

Note that this matrix is trivial d-disjunct in our definition, but it does not
come by truncation of columns from a nontrivial constant weight
d-disjunct matrix.
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We have seen that

Theorem

If n(d , t, d + 1) ≥ t − 1 then n(d , t, d + 1) ≤ t(t−1)
d(d+1) , in particular

t ≥ d(d + 1).

Then for t = d(d + 1) we have

Corollary

n(d , d(d + 1), d + 1) ≤ d(d + 1)− 1.
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We have seen that

Theorem

Suppose M is nondegenerate. Then n(d , t, d + 1) ≤ t(t−1)
d(d+1) .

Then for t = (d + 1)2 we have

Corollary

Suppose M is nondegenerate. Then n(d , (d + 1)2, d + 1) ≤ (d + 1)(d + 2).
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We have just shown

Corollary

Suppose M is nondegenerate. Then n(d , (d + 1)2, d + 1) ≤ (d + 1)(d + 2).

The following example gives the equality.

Example

(2− (q2, q, 1) design) Let q be a prime power. The affine plane F 2
q over

Fq has q2 points and q2 + q lines. Of course any line has q points and any
two lines intersect at at most 1 point. Hence the points-lines incidence
matrix is t × n d-disjunct with with constant weight w , where t = q2,
n = q2 + q and w = q = d + 1 satisfy

n = q2 + q = (d + 1)(d + 2).

The first q which is not a prime power is when q = 6 = d + 1. In this case
the equality does not hold.
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Affine plane and projective plane

1 In general for any positive integer r , prime power or not, we can
define affine plane using the language of designs.

2 A projective plane of order r is a 2-(r2 + r + 1, r + 1, 1) design.

3 An affine plane of order r is a 2-(r2, r , 1) design.

4 It is known that there is a projective plane of order r if and only if
there is an affine plane of order r .

5 The points and lines structure in F 2
q gives an affine plane of order q

when q is a prime power.

6 The existence of finite projective planes of other orders is an open
question.

7 The case r = 6 has been ruled out by Bruck-Ryser-Chowla theorem.

8 The next case r = 10 has been ruled out by massive computer
calculations.

9 There is nothing more known, in particular r = 12 is still open.
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Lines arrangement of a set P

Let P be a set of m × u elements. We call an element of P a point, and a
u-subset of P a line.

Problem

Find a class B of lines in P such that |B| > |P| and any two lines in B
have at most one point of intersection.

Note that the incidence matrix of P and B forms a nontrivial
(u − 1)-disjunct matrix of constant weight u.
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An example with |P | = 6× 6
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Designs, difference sets, finite geometries, probability methods, brute force
are used in the construction d-disjunct matrices.

We will present a systematic way to realize the above example of Wu with
36 points and 37 lines, each line weight 6 and any two lines intersecting at
at most 1 points.

We also construct m(q + 1) + 1 lines in a point set of m(q + 1) points,
such that each line has weight q + 1 and any two lines intersecting at at
most 1 points, where m ≥ 2q − 1.
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Forward difference property

1 Let q be a prime power and m ≥ q be an integer.

2 Let Fq := {0, a0, a1, . . . , aq−2} denote the finite field of q elements,
where a is a generator of the cyclic multiplication group
F ∗q := Fq − {0}.

3 Let Zm := {0, 1, . . . , m− 1} be the addition group of integers modulo
m. We use the order of integers to order the elements in Zm, e.g.
0 < 1.

4 A subset T ⊆ Zm × Fq is said to have the forward difference distinct
property in Zm × Fq if the set

DT := {(j , y)− (i , x) | (i , x), (j , y) ∈ T with i < j}

consists of |T |(|T |−1)
2 elements.
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The Set mTq

Let mTq ⊆ Zm × Fq be defined by

mTq = {(i , ai ) | i ∈ Zm, 0 ≤ i ≤ q − 1}.

0̀ 1̀ 2̀ · · ·
`

q̀ − 1 m̀ − 1· · ·

...

`
a0

`
a1

`
a2

`
aq−2

s s s

s

s

mTq
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A preview of the finial result

0̀ 1̀ 2̀ · · ·
` `
q − 1 q̀ m̀ − 1· · ·

...

`
a0

`
a1

`
a2

`
aq−2

s

s s s

s

ss s

s s s

s

ss ss∞

Lines in Zm × (Fq ∪ {∞})
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The Set 5T5

For q = 5, a = 2,

5T5 = {(0, 1), (1, 2), (2, 4), (3, 3), (4, 1)}

and

D5T5 = { (1, 1), (1, 2), (1, 4), (1, 3)

(2, 3), (2, 1), (2, 2)

(3, 2), (3, 4)

(4, 0) }.

Since |D5T5 | = 10, the set 5T5 has the forward difference distinct property
in Z5 × F5.
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mTq has the forward difference distinct property

Theorem

The set mTq has the forward difference distinct property in Zm × Tq.

Proof.

Given any pair (c , d) ∈ Zm × Fq, solve the equations

(c, d) = (j , aj)− (i , ai )

for 0 ≤ i < j ≤ q − 1. Note that 1 ≤ c ≤ q − 1 to have a solution. If
c = q − 1 then j = q − 1 and i = 0. If c 6= q − 1 then
ai = d/(aj−i − 1) = d/(ac − 1) and j = c + i . In each case the pair
(i , ai ), (j , aj) is unique determined by the element (c , d) ∈ Zm × Fq.
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Difference Property

A subset T ⊆ Zm × Fq is said to have the difference distinct property in
Zm × Fq if the set −DT ∪ DT consists of |T |(|T | − 1) elements.

From the structure of DmTq we find (0, x) 6∈ −DmTq ∪ DmTq for any
x ∈ Fq. This property will be used later.
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Non-example

We have seen

D5T5 = { (1, 1), (1, 2), (1, 4), (1, 3)

(2, 3), (2, 1), (2, 2)

(3, 2), (3, 4)

(4, 0) }.

Hence

−D5T5 = { (4, 4), (4, 3), (4, 1), (4, 2)

(3, 2), (3, 4), (3, 3)

(2, 3), (2, 1)

(1, 0) }.

Since | −D5T5 ∪D5T5 | = 16 6= 20, the set 5T5 does not have the difference
distinct property in Z5 × F5.
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Example

D6T5 = { (1, 1), (1, 2), (1, 4), (1, 3)

(2, 3), (2, 1), (2, 2)

(3, 2), (3, 4)

(4, 0) }.

Hence considering as the negative in Z6 × F5, we have

−D6T5 = { (5, 4), (5, 3), (5, 1), (5, 2)

(4, 2), (4, 4), (4, 3)

(3, 3), (3, 1)

(2, 0) }.

Since | − D6T5 ∪ D6T5 | = 20 now, the set 6T5 has the difference distinct
property in Z6 × F5.
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Problem

Determine the prime power integer q such that with a suitable choice of a
generator a ∈ Fq, the set q+1Tq has the difference distinct property in
Zq+1 × Fq.

By direct computing by hands, we find the above statement is true for
q = 2, 4, 5 and is false for q = 3, 7 (First two primes in 4k + 3 form).

Example

(The case q = 3) Note that

4T3 = {(0, 1), (1, 2), (2, 1)},
D4T3 = {(1, 1), (1, 2), (2, 0)},

− D4T3 = {(3, 2), (3, 1), (2, 0)}.

Hence the set 4T3 does not have the difference distinct property in
Z4 × F3.
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2q−1Tq has the difference distinct property

Theorem

For m ≥ 2q − 1, the set mTq has the difference distinct property in
Zm × Tq.

Proof.

By the theorem in the last page we have |DmTq | = | −DmTq | = q(q− 1)/2.
The first coordinate of an element in D2q−1Tq runs from 1 to q − 1, and
the first coordinate of an element in −D2q−1Tq from m + 1− q to m − 1.
The assumption m ≥ 2q − 1 implies −D2q−1Tq ∩ D2q−1Tq = ∅.
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Lines with any two intersecting in at most a point

Theorem

Suppose that mTq ⊆ Zm × Fq has the difference distinct property in
Zm × Fq. Set B = {u +m Tq | u ∈ Zm × Fq}. Then |L ∩ L′| ≤ 1 for any
distinct L, L′ ∈ B.

Proof.

Routine.

Note that there are mq lines and mq points in Zm × Fq, and a line has
q = |T | points with q different first coordinates. Apparently more lines
can be added to B still having the conclusion of the above theorem, for
example, adding vertical lines to B.
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Adding an infinity point to each line

As previous page, assume that any two lines in
B = {u +m Tq | u ∈ Zm × Fq} intersect at at most one point.

Since (0, x) 6∈ −DmTq ∪ DmTq , we have L ∩ ((0, x) + L) = ∅ for any
nonzero x ∈ Fq and L ∈ B. Then B is partitioned into m classes with each
class consisting of parallel lines (non-intersecting lines).
We add a common point (i ,∞) to each line in a parallel class where
i ∈ Zm is first element (in the usual order) in Zm not appearing in the first
coordinate of any points of that line. This forms a new set B′ of Lines
with underground point set Zm × (Fq ∪ {∞}). Note that any two distinct
lines in B′ intersect in at most one point too.
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Vertical Lines and infinite line

Set Vi = {(i , j) | j ∈ Fq ∪ {∞} } for 0 ≤ i ≤ m − 1, and Vi is called the
ith vertical line. Set H = {(i ,∞) | 0 ≤ i ≤ q} (here assuming m > q),
and H is called an infinite line.

Set B′′ := B′ ∪ {H, V0, V1, . . . , Vm−1}. Then
|Zm × (Fq ∪ {∞})| = m(q + 1) and |B′′| = m(q + 1) + 1.
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Conclusion

Suppose that mTq ⊆ Zm × Fq has the difference distinct property in
Zm × Fq, for example in the case m ≥ 2q − 1 or m = q + 1 = 6.

Let M be
the incidence matrix of Zm × (Fq ∪ {∞}) and B′′. Then M is a nontrivial
q-disjunct matrix with m(q + 1) rows and constant column weight q + 1.

Note that in our construction each row has weight at least
q + 1 = |mTq|+ 1.
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A Review of our result
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Lines in Zm × (Fq ∪ {∞})
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The end

Thank you for your attention.
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