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Binary matrix for group testing

Let [n] :=={1,2,...,n} be a set of items containing a subset
P C [n], the set of defected item.
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test T; is a subset of [n] for 1 </ < t.

We arrange such a group testing design by the following
binary matrix M.
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Binary matrix for group testing

Let [n] :=={1,2,...,n} be a set of items containing a subset
P C [n], the set of defected item.

We want to collect a group {71, Ta,..., T;} of t tests, each
test T; is a subset of [n] for 1 </ < t.

We arrange such a group testing design by the following
binary matrix M.

Let M be the t x n binary matrix defined by

T 17j€Ti;
M’J‘{ 0, j&T

for1<i<tandjen].
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The output of a group testing

Let P € FJ denote the characteristic vector of P C [n].
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The output of a group testing

Let P € FJ denote the characteristic vector of P C [n].
The map P — P is a bijection from the power set of [n] to FJ.

We use P C P’ if P C P’, and similar for using other set
notations in vectors.
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The output of a group testing

Let P € FJ denote the characteristic vector of P C [n].
The map P — P is a bijection from the power set of [n] to FJ.

We use P C P’ if P C P’, and similar for using other set
notations in vectors.

om(P) := U M; = M x P, where x is the matrix product by
ieP
using Boolean sum to replace addition.
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Disjunct matrix

Note that oy (P UP’) = op(P) U op(P’) for P, P' C [n].
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Disjunct matrix

Note that oy (P UP’) = op(P) U op(P’) for P, P' C [n].
In particular if P C P” then op(P) C om(P”).

For W C FJ, M is W-disjunct if op(P) € onm(P”) for any
P,P" € W with P Z P".

14 /105



Disjunct matrix

Note that oy (P UP’) = op(P) U op(P’) for P, P' C [n].
In particular if P C P” then op(P) C om(P”).

For W C FJ, M is W-disjunct if op(P) € onm(P”) for any
P,P" € W with P Z P".

In the above definition, it suffices to assume |P| = 1.
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Disjunct matrix

Note that oy (P UP’) = op(P) U op(P’) for P, P' C [n].
In particular if P C P” then op(P) C om(P”).

For W C FJ', M is W-disjunct if op(P) € om(P”) for any
P,P” € W with P & P".
In the above definition, it suffices to assume |P| = 1.

M is d-disjunct if for any d 4 1 distinct columns M;,, M;,
d
-y Miy, we have My Z |J M;,
j=1

ig»

Exercise

Show that a d-disjunct matrix is ( <[nL )-disjunct.

16 /105



Decidable matrix

Note that oy (P); =0 iff PN T; =0 iff PC T;.
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Decidable matrix

Note that oy (P); =0 iff PN T; =0 iff PC T;.

Hence PC () T
om(P)i=0
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Decidable matrix

Note that oy (P); =0 iff PN T; =0 iff PC T;.

Hence PC () T
om(P)i=0
For W C FJ, M is W-decidable if P =) T, for any
om(P)i=0
PeW.
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Decidable matrix

Note that oy (P); =0 iff PN T; =0 iff PC T;.

Hence PC () T
oym(P);i=0

For W C FJ, M is W-decidable if P =) T, for any
om(P)i=0
PeW.

A < [Z] >—decidab|e matrix is called d-decidable.
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Decidable matrix

Note that oy (P); =0 iff PN T; =0 iff PC T;.
Hence PC () T,

om(P)i=0
For W C FJ, M is W-decidable if P = N T, for any
om(P);i=0
PeW
A < [Z] >—decidab|e matrix is called d-decidable.
[n

A < < ]d )—decidable matrix is called d-decidable.

Exercise

Show that a W-disjunct matrix is W-decidable.
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Decidable matrix

Note that oy (P); =0 iff PN T; =0 iff PC T;.
Hence PC T

om(P)i=0
For W C FJ, M is W-decidable if P = N T, for any
om(P)i=0
PeW
A < [Z] >—decidab|e matrix is called d-decidable.
[n

A < < ]d )—decidable matrix is called d-decidable.

Exercise

Show that a W-disjunct matrix is W-decidable.

Find a W-decidable matrix which is not W-disjunct?

22 /105



Separable matrix

For W C FJ, M is W-separable if the restricted function
opm | W of oy to W is injective.
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Separable matrix

For W C FJ, M is W-separable if the restricted function
opm | W of op to W is injective.

If M is W-separable then for each vector v in the output set
om(W) there exists a unique vector P € W such that
om(P) = u, i.e. the set P of positive items can be decoded
from the output vector u.
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For W C FJ, M is W-separable if the restricted function
opm | W of op to W is injective.

If M is W-separable then for each vector v in the output set
om(W) there exists a unique vector P € W such that
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from the output vector u.
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Separable matrix

For W C FJ, M is W-separable if the restricted function
opm | W of op to W is injective.

If M is W-separable then for each vector v in the output set
om(W) there exists a unique vector P € W such that
om(P) = u, i.e. the set P of positive items can be decoded
from the output vector u.

A < <[n]d >—separab|e matrix is also called E—separable.

A < [Z] )—separable matrix is also called d-separable.

Exercise
A W-decidable matrix is W-separable for any W C F]J.
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4 )

W-disjunct

W-decidable

\ W-separable J
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4 )

W-disjunct

W-decidable

\ W-separable J

Find the relation between the above three classes of binary
matrices with slightly changing W and possibly adding or deleting
a few rows.
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A property distinguishes decidable matrix from others

Note that for each t x n binary matrix M there exists a unique
maximal Wy, C FJ' such that I\/Qs W-decidable, in fact,
Wuy={PeF)|P= [ T}

OM(P),':O
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A property distinguishes decidable matrix from others

Note that for each t x n binary matrix M there exists a unique
maximal Wy, C FJ' such that I\/Qs W-decidable, in fact,
OM(P),':O

Problem
Study the map M — W),.
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1-disjunct matrix

A 1-disjunct matrix to detect the infected item 3 from

{1,2,3,4,5,6} :
Tests/Items | 1 2 3 4 5 6 om({3})
one | 111000 — 1
Two | 100110 — 0
Three | 01 0101 — 0
Four | 001011 — 1
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1-disjunct matrix

A 1-disjunct matrix to detect the infected item 3 from
{1,2,3,4,5,6} :

Tests/Items | 1 2 3 4 5 6 om({3})
one | 111000 — 1
Two | 100110 — 0
Three | 01 0101 — 0
Four | 001011 — 1

In fact the above 4 x 6 matrix M has W)y, =
( o ) U{{3.5,6},{2,4,6}, {1,4,5}, {4,5,6}, {1,2,3,4,5,6}}.

33 /105



n-disjunct matrix

For t = n the t x n identity matrix / is Fy-disjunct.
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n-disjunct matrix

Example

For t = n the t x n identity matrix / is Fy-disjunct.

In applying to a group testing, we need the number t of tests is
smaller than the number n of items, otherwise we would rather test
the items one by one.
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Nontrivial M

An t X n binary matrix is nontrivial if t < n.
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An t X n binary matrix is nontrivial if t < n.

Let g be a prime power. The affine plane Fg over F, has g° points
and g% + q lines.
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Nontrivial M

An t X n binary matrix is nontrivial if t < n.

Example

Let g be a prime power. The affine plane Fg over F, has g° points
and g% + q lines. Since any line has g points and any two lines
intersect at most 1 point, the points of a line can not be covered
by the union of other g — 1 lines.
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Nontrivial M

An t X n binary matrix is nontrivial if t < n.

Example

Let g be a prime power. The affine plane Fg over F, has g° points
and g% + q lines. Since any line has g points and any two lines
intersect at most 1 point, the points of a line can not be covered
by the union of other g — 1 lines. Hence the points-lines incidence
matrix M is (g — 1)-disjunct matrix,
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Nontrivial M

An t x n binary matrix is nontrivial if t < n.

Example

Let g be a prime power. The affine plane Fg over F, has g° points
and g% + q lines. Since any line has g points and any two lines
intersect at most 1 point, the points of a line can not be covered
by the union of other g — 1 lines. Hence the points-lines incidence
matrix M is (g — 1)-disjunct matrix, and it is nontrivial since
n=q¢>+q>q*=t.
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Nontrivial M

An t x n binary matrix is nontrivial if t < n.

Example

Let g be a prime power. The affine plane Fg over F, has g° points
and g% + q lines. Since any line has g points and any two lines
intersect at most 1 point, the points of a line can not be covered
by the union of other g — 1 lines. Hence the points-lines incidence
matrix M is (g — 1)-disjunct matrix, and it is nontrivial since
n=q¢>+q>q*=t.

Problem

For each positive integer g find a nontrivial (g — 1)-disjunct matrix
with t = g°.
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Nontrivial M

An t x n binary matrix is nontrivial if t < n.

Example

Let g be a prime power. The affine plane Fg over F, has g° points
and g% + q lines. Since any line has g points and any two lines
intersect at most 1 point, the points of a line can not be covered
by the union of other g — 1 lines. Hence the points-lines incidence
matrix M is (g — 1)-disjunct matrix, and it is nontrivial since
n=q¢>+q>q*=t.

Problem

For each positive integer g find a nontrivial (g — 1)-disjunct matrix
with t = g°.

The first g which is not a prime power is when g = 6.
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Affine plane and projective plane

In general for any positive integer r, prime power or not, we
can define affine plane using the language of designs.
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only if there is an affine plane of order r.
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order g when g is a prime power.
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It is known that there is a projective plane of order r if and
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The points and lines structure in Fg gives an affine plane of
order g when g is a prime power.

[@ The existence of finite projective planes of other orders is an
open question.
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In general for any positive integer r, prime power or not, we
can define affine plane using the language of designs.

A projective plane of order ris a 2-(r?>+r+1,r+1,1) design.
An affine plane of order r is a 2-(r?, r, 1) design.

It is known that there is a projective plane of order r if and
only if there is an affine plane of order r.

The points and lines structure in Fg gives an affine plane of
order g when g is a prime power.

[@ The existence of finite projective planes of other orders is an
open question.

The case r = 6 has been ruled out by Bruck-Ryser-Chowla
theorem.
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Affine plane and projective plane

In general for any positive integer r, prime power or not, we
can define affine plane using the language of designs.

A projective plane of order ris a 2-(r?>+r+1,r+1,1) design.

An affine plane of order r is a 2-(r?, r, 1) design.

It is known that there is a projective plane of order r if and
only if there is an affine plane of order r.

The points and lines structure in F3 gives an affine plane of
order g when g is a prime power.

[@ The existence of finite projective planes of other orders is an
open question.

The case r = 6 has been ruled out by Bruck-Ryser-Chowla
theorem.

B The next case r = 10 has been ruled out by massive computer
calculations.
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Affine plane and projective plane

In general for any positive integer r, prime power or not, we
can define affine plane using the language of designs.

A projective plane of order ris a 2-(r?>+r+1,r+1,1) design.
An affine plane of order r is a 2-(r?, r, 1) design.

It is known that there is a projective plane of order r if and
only if there is an affine plane of order r.

The points and lines structure in F3 gives an affine plane of
order g when g is a prime power.

[@ The existence of finite projective planes of other orders is an
open question.

The case r = 6 has been ruled out by Bruck-Ryser-Chowla
theorem.

B The next case r = 10 has been ruled out by massive computer
calculations.

Bl There is nothing more known, in particular r = 12 is still open.
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Nontrivial 5-disjunct matrix with 36 rows

Since there is no affine plane of order 6, we must find some other
way to construct a nontrivial 5-disjunct matrix with 36 rows.
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Nontrivial 5-disjunct matrix with 36 rows

Since there is no affine plane of order 6, we must find some other
way to construct a nontrivial 5-disjunct matrix with 36 rows.

In the following we will give a system to construct nontrivial
d-disjunct matrices including the above case.
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Nontrivial 5-disjunct matrix with 36 rows

Since there is no affine plane of order 6, we must find some other
way to construct a nontrivial 5-disjunct matrix with 36 rows.

In the following we will give a system to construct nontrivial
d-disjunct matrices including the above case.

Note that if there exists a nontrivial d-disjunct matrix with

(d +1)% — 1 rows then EFF's conjecture is false. See page 29 of
the book " Pooling Designs and nonadaptive group testing” by
Ding-Zhu Du and Frank K. Hwang for a description of EFF's
conjecture.
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A 36 x 37 5-disjunct matrix




Forward difference property

Let g be a prime power and m > g be an integer.
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Forward difference property

Let g be a prime power and m > g be an integer.

Let Fy :={0,a% al,..., aP~2} denote the finite field of ¢
elements, where a is a generator of the cyclic multiplication
group Fj := Fq—{0}.
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Forward difference property

Let g be a prime power and m > g be an integer.

Let Fy :={0,a% al,..., aP~2} denote the finite field of ¢
elements, where a is a generator of the cyclic multiplication
group Fj := Fq—{0}.

Let Zn, :={0,1,...,m — 1} be the addition group of integers
modulo m. We use the order of integers to order the elements
inZm, eg. 0<1.
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Forward difference property

Let g be a prime power and m > g be an integer.

Let Fy :={0,a% al,..., aP~2} denote the finite field of ¢
elements, where a is a generator of the cyclic multiplication
group Fj := Fq—{0}.

Let Zn, :={0,1,...,m — 1} be the addition group of integers
modulo m. We use the order of integers to order the elements
inZm, eg. 0<1.

A subset T C Zp, x Fgq is said to have the forward difference
distinct property in Zn, x Fq if the set

Dr = {(,y) — (%) | (1.%). (.y) € T with i < j}

elements.

consists of W
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The Set ,, T,

Let »Tq € Zm x Fq be defined by
mTg=1(i,a) | i€ Zm0<i<qg-—1}.
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The Set ,, T,

Let »Tq € Zm x Fq be defined by
mTg=1(i,a) | i€ Zm0<i<qg-—1}.

a9~
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A preview of the finial result

a9

al
a0

q—lq DR m—l

Lines in Zpy, x (Fq U {o0})
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The Set 5 T5

Forg=5, a=2,

575 = {(07 1)7 (la 2)7 (27 4)7 (37 3)? (47 1)}

and

D5T5

{

(1,1),(1,2),(1,4),(1,3)
(2,3),(2,1),(2,2)
(3,2),(3,4)

(4,0) }.
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The Set 5 T5

For g =5, a=2,

575 = {(07 1)7 (la 2)7 (27 4)7 (37 3)? (47 1)}

and

Dyry = { 171)7(172)7(174)7(173)
2, 3), (2, ].), (2, 2)

3,2),(3,4)
4

) F

()

I

(
(
(
(

Since |D, 1,| = 10, the set 5 T5 has the forward difference distinct
property in Zs X Fs.
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Difference Property

A subset T C Zp, x F4 is said to have the difference distinct
property in Zp X Fgq if the set —D7 U D71 consists of |T|(|T| — 1)
elements.
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Difference Property

A subset T C Zp, x F4 is said to have the difference distinct
property in Zp X Fgq if the set —D7 U D71 consists of |T|(|T| — 1)
elements.

From the structure of D, 7, we find (0,x) ¢ =D, 1,U D, 1, for any
x € Fq. This property will be used later.
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Non-example

We have seen
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We have seen

=
o
S
L
X
v
c
o

=

(1,1),(1,2),(1,4),(1,3)

{

D5T5
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Non-example

We have seen

D5T5 = { (17 1)7 (17 2)? (1a 4): (17 3)
(2,3),(2,1),(2,2)
(3,2),(3,4)
(4,0) }.
Hence
_DsTs = { (47 4)7 (4’ 3)’ (47 1)7 (47 2)
(3'/ 2)7 (37 4)’ (37 3
(2,3),(2,1)
(1,0)
Since | — D, 1, U D, ;| = 16 # 20, the set 5 T5 does not have the

difference distinct property in Zs x Fs.
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Embedding

For positive integers n < m, the set Z, can be viewed as a subset
of Zm in the usual way. Hence we have Z, x F; C Zpm X Fq.
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Embedding

For positive integers n < m, the set Z, can be viewed as a subset
of Zm in the usual way. Hence we have Z, x Fg C Zpm X Fg. In
this setting, again

D6T5 = D5T5 = {
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Embedding

For positive integers n < m, the set Z, can be viewed as a subset
of Zm in the usual way. Hence we have Z, x Fg C Zpm X Fg. In
this setting, again

D6T5:D5T5 :{ (171)7( ’2)7(1a4)3(173)
(2,3),(2,1),(2,2)
(3,2), (3,
(4,0) }.

Hence considering as the negative in Zg X F5, we have

_D6T5 = { (57 4)7 (57 3)7 (57 1)7 (57 2)
(4,2),(4,4),(4,3)
(3,3),(3,1)
(2,0) 1
Since | — Dy1, U D, 7,| = 20 now, the set  T5 has the difference
distinct property in Zg X Fs.
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Determine the prime power integer g such that with a suitable
choice of a generator a € F, the set 441 T, has the difference
distinct property in Zg1 X Fgy.
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Determine the prime power integer g such that with a suitable
choice of a generator a € F, the set 441 T, has the difference
distinct property in Zg1 X Fgy.

By direct computing by hands, we find the above statement is true
for ¢ = 2,4,5 and is false for g = 3,7 (First two primes in 4k + 3
form).
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Problem

Determine the prime power integer g such that with a suitable
choice of a generator a € F, the set 441 T, has the difference
distinct property in Zg1 X Fgy.

By direct computing by hands, we find the above statement is true
for ¢ = 2,4,5 and is false for g = 3,7 (First two primes in 4k + 3
form).

Example

Note that

4T3 = {(07 1)7 (17 2)7 (27 1)}7
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Problem

Determine the prime power integer g such that with a suitable
choice of a generator a € F, the set 441 T, has the difference
distinct property in Zg1 X Fgy.

By direct computing by hands, we find the above statement is true
for ¢ = 2,4,5 and is false for g = 3,7 (First two primes in 4k + 3
form).

Example

Note that

4T3 = {(071)7(172)7(271)}7
D4T3 = {(171)7(172)a(270)}a
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Problem

Determine the prime power integer g such that with a suitable
choice of a generator a € F, the set 441 T, has the difference
distinct property in Zg1 X Fgy.

By direct computing by hands, we find the above statement is true
for ¢ = 2,4,5 and is false for g = 3,7 (First two primes in 4k + 3
form).

Example

Note that

4T3 = {(071)7(172)7(271)}7
{(1,1),(1,2),(2,0)},
- D4T3 = {(372)7(3? 1)’(270)}'

O
By
I
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Problem

Determine the prime power integer g such that with a suitable
choice of a generator a € F, the set 441 T, has the difference
distinct property in Zg1 X Fgy.

By direct computing by hands, we find the above statement is true
for ¢ = 2,4,5 and is false for g = 3,7 (First two primes in 4k + 3
form).

Example

Note that

4T3 = {(071)7(172)7(271)}7
{(1,1),(1,2),(2,0)},
_D4T3 = {(372)7(3?1)a(270)}'

Hence the set 4 T3 does not have the difference distinct property in
Z4 X F3.

O
By
I
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m T4 has the forward difference distinct property

The set ,, T4 has the forward difference distinct property in
L X Tg.
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m T4 has the forward difference distinct property

The set ,, T4 has the forward difference distinct property in
L X Tg.

Suppose for 0 < i< j<qg—1wehavej—i=candad —a =d.
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m T4 has the forward difference distinct property

The set ,, T4 has the forward difference distinct property in
L X Tg.

Proof.

Suppose for 0 < i< j<qg—1wehavej—i=candad —a =d.
Note that 1 < c < qg— 1.
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m T4 has the forward difference distinct property

The set ,, T4 has the forward difference distinct property in
L X Tg.

Proof.

Suppose for 0 < i< j<qg—1wehavej—i=candad —a =d.
Note that 1 < c<qg—1l.Ifc=qg—1thenj=qg—1and i=0.
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m T4 has the forward difference distinct property

The set ,, T4 has the forward difference distinct property in
L X Tg.

Proof.

Suppose for 0 < i< j<qg—1wehavej—i=candad —a =d.
Note that 1 < c<g—1l.Ifc=qg—1thenj=qg—1and i=0.If
c#Aq—1thena =d/("—1)=d/(a—1)and j=c+i.
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m T4 has the forward difference distinct property

The set ,, T4 has the forward difference distinct property in
L X Tg.

Proof.

Suppose for 0 < i< j<qg—1wehavej—i=candad —a =d.
Note that 1 < c<g—1l.Ifc=qg—1thenj=qg—1and i=0.If
c#q—1thena =d/(d~"—1)=d/(a—1) and j=c+i. In
each case the pair (i,a'), (j,a) is unique determined by the
element (c,d) € Zm x Fq. O
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2g—1 I q has the difference distinct property

For m > 2q — 1, the set ,, T4 has the difference distinct property in
L X Tgq.
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2g—1 I q has the difference distinct property

For m > 2q — 1, the set ,, T4 has the difference distinct property in
L X Tgq.

Proof.

By the theorem in the last page we have
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2g—1 I q has the difference distinct property

For m > 2q — 1, the set ,, T4 has the difference distinct property in
L X Tgq.

Proof.

By the theorem in the last page we have

ID,,1,l =|— D,1,] = q(q — 1)/2. The first coordinate of an
element in D, 1, runs from 1 to g — 1, and the first coordinate
of an element in —D, 7, fromm+1—gqtom—1.
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2g—1 I q has the difference distinct property

For m > 2q — 1, the set ,, T4 has the difference distinct property in
L X Tgq.

Proof.

By the theorem in the last page we have

ID,,1,l =|— D,1,] = q(q — 1)/2. The first coordinate of an
element in D, 1, runs from 1 to g — 1, and the first coordinate
of an element in —D, 7, fromm+1—gqtom—1. The
assumption m > 2q — 1 implies =D, 7, N D, 7, = 0. O
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Lines with any two intersecting in at most a point

Theorem

Suppose that » Tq C Zm % Fq has the difference distinct property
inZm X Fq. Set B={u+m Tqg|u€Zmx Fg}. Then |LNL'| <1
for any distinct L, L' € B.
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Lines with any two intersecting in at most a point

Theorem

Suppose that » Tq C Zm % Fq has the difference distinct property
inZm X Fq. Set B={u+m Tqg|u€Zmx Fg}. Then |LNL'| <1
for any distinct L, L' € B.

Proof.
Routine. ]
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Lines with any two intersecting in at most a point

Theorem

Suppose that » Tq C Zm % Fq has the difference distinct property
inZm X Fq. Set B={u+m Tqg|u€Zmx Fg}. Then |LNL'| <1
for any distinct L, L' € B.

Proof.
Routine. ]

An element in B is called a line and an element in Z,, X F, is called
a point.
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Lines with any two intersecting in at most a point

Theorem

Suppose that » Tq C Zm % Fq has the difference distinct property
inZm X Fq. Set B={u+m Tqg|u€Zmx Fg}. Then |LNL'| <1
for any distinct L, L' € B.

Proof.
Routine. ]

An element in B is called a line and an element in Z,, X F, is called
a point. Note that there are mq lines and mgq points, and a line
has ¢ = | T| points with g different first coordinates.
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Lines with any two intersecting in at most a point

Theorem

Suppose that » Tq C Zm % Fq has the difference distinct property
inZm X Fq. Set B={u+m Tqg|u€Zmx Fg}. Then |LNL'| <1
for any distinct L, L' € B.

Proof.
Routine. ]

An element in B is called a line and an element in Z,, X F, is called
a point. Note that there are mq lines and mgq points, and a line
has ¢ = | T| points with g different first coordinates. Apparently
more lines can be added to B still having the conclusion of the
above theorem, for example, adding vertical lines to B.

93 /105



Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq|u€Zmnx Fq} intersect at at most one point.
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq|u€Zmnx Fq} intersect at at most one point.

Since (0,x) ¢ =D, 1, U D, 1,, we have LN ((0,x) + L) = 0 for any
nonzero x € Fg and L € B.
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq|u€Zmnx Fq} intersect at at most one point.

Since (0,x) ¢ =D, 1, U D, 1,, we have LN ((0,x) + L) = 0 for any

nonzero x € Fy and L € B. Then B is partitioned into m classes
with each class consisting of parallel lines (non-intersecting lines).
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq|u€Zmnx Fq} intersect at at most one point.

Since (0,x) ¢ =D, 1, U D, 1,, we have LN ((0,x) + L) = 0 for any
nonzero x € Fy and L € B. Then B is partitioned into m classes
with each class consisting of parallel lines (non-intersecting lines).
We add a common point (i,00) to each line in a parallel class
where i € Z,, is not appearing in the first coordinate of any points
of the line and i — 1 appearing in some point of the line.
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq|u€Zmnx Fq} intersect at at most one point.

Since (0,x) ¢ =D, 1, U D, 1,, we have LN ((0,x) + L) = 0 for any
nonzero x € Fy and L € B. Then B is partitioned into m classes
with each class consisting of parallel lines (non-intersecting lines).
We add a common point (i,00) to each line in a parallel class
where i € Z,, is not appearing in the first coordinate of any points
of the line and i — 1 appearing in some point of the line. This
forms a new set B’ of Lines with underground point set

Zm % (FqgU{o0}).
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Adding an infinity point to each line

As previous page, assume that any two lines in
B={u+mTq|u€Zmnx Fq} intersect at at most one point.

Since (0,x) ¢ =D, 1, U D, 1,, we have LN ((0,x) + L) = 0 for any
nonzero x € Fy and L € B. Then B is partitioned into m classes
with each class consisting of parallel lines (non-intersecting lines).
We add a common point (i,00) to each line in a parallel class
where i € Z,, is not appearing in the first coordinate of any points
of the line and i — 1 appearing in some point of the line. This
forms a new set B’ of Lines with underground point set

Zm X (Fqg U {o0}). Note that any two distinct lines in B’ intersect
in at most one point too.
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Vertical Lines and infinite line

Set Vi={(i,j) | j€ FgU{oo} } for 0<i<m—1,and Vjis
called the ith vertical line. Set H = {(i,00) | 0 < i < q} (here
assuming m > q), and H is called an infinite line.
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Vertical Lines and infinite line

Set Vi={(i,j) | j€ FgU{oo} } for 0<i<m—1,and Vjis
called the ith vertical line. Set H = {(i,00) | 0 < i < q} (here
assuming m > q), and H is called an infinite line.

Set B” .= B' U {H, Vo, Vi, ..., Vm—l}' Then
|Zm x (FqgU {oo})| =m(qg+1) and |B"| = m(q+ 1)+ 1.
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Conclusion

Suppose that ,, Tqg C Zm X F4 has the difference distinct property
in Zm % Fgq, for example in the case m>2g—1lorm=q+1=6.
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Conclusion

Suppose that ,, Tqg C Zm X F4 has the difference distinct property

in Zm % Fgq, for example in the case m>2g—1lorm=q+1=6.
Let M be the incidence matrix of Z,, x (Fq U {occ0}) and B”. Then
M is a nontrivial g-disjunct matrix with m(q + 1) rows.
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A Review of our result

al
a0

q—lq DR m—l

Lines in Zpy, x (Fq U {o0})
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Thank you for your attention.
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