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Lit-only sigma game

Let X = (S, E) be a finite simple connected graph of order n. Every vertex
of X can be assigned to either black state or white state to form a
configuration. A move on a configuration is to select one vertex s € S
having black state and then change those states of all neighbors of s.
Given two configurations, the goal is to decide if one can reach the other
by a sequence of moves. This is the lit-only sigma game on X.
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Linear algebraic modeling

A configuration of the lit-only sigma game on the graph X = (X, E)
described in last page is naturally associated with a column vector u in the
n-dimensional vector space F} over F, (n = |S|), where u; = 1 iff the
vertex i € S is black. Each move is then naturally associated with an

n x n matrix in GL,(F) that acts on FJ' by left multiplication.
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Example A

10000 1
10000 1
11000 ol
00100 A
10010 0
00001 0

The Lit-Only Sigma Game on a Simple Grapl 2009 &7 H 30 H 5/ 39




2009 = 8 S = S B ER S22 1 28 T v O = B e B 5 S I T R

Example A

4
6
110000 1 0
01 00O0TG O 1 1
011000 o |1
000100 1] |1
01 0010 0 1
0 00 O0O0T1 0 0
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Example B

10000 1
10000 0
11000 ol
00100 A
10010 0
00001 0
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Example B

6
110000 1 1
010000 0 0
011000 0] |60
000100 1| 1
010010 0 0
0 00O0O0T1 0 0
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History |

This game implicitly appeared in M. Chuah (Z&) and C. Hu's papers in
2004 when they studied the equivalence classes of Vogan diagrams. Gerald
Jennhwa Chang (i&#£%£) introduced this game to the Chinese
combinatorists by a talk in the title " Graph Painting and Lie Algebra” in
2005 International and Third Cross-strait Conference on Graph Theory and
Combinatorics. (2005 4 & 3 B AH A& £2 Bl R 21l & 3 B 56 = JEvR I /= (B o
B E 221G #) It was considered as a new game and the name of this
game was not given when Chang’s talk was given.
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History Il

Xinmao Wang and Yaokun Wu recognized this game is a variety of anther
game, called sigma game, which has been studied actively since 1980’s.
Even for the lit-only sigma game, M. Chuah and C. Hu were not the first

two to study. It appears as early as in 2001 paper of H. Eriksson, K.
Eriksson, J. SjAdstrand.
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Flipping groups and flipping classes

Definition

Let X = (X, E) be a graph. For a vertex s € S, we associate a matrix
s € Mat,(F2), denoted by the bold type of s, as

o _ 1, ifu=v,orv=sanduv € E;
U1 0, else,

where u,v € S.

The Lit-Only Sigma Game on a Simple Grap
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Flipping groups and flipping classes
Definition

Let X = (X, E) be a graph. For a vertex s € S, we associate a matrix
s € Mat,(F2), denoted by the bold type of s, as

o _ 1, ifu=v,orv=sanduv € E;
U1 0, else,

where u,v € S.

Definition

Let W denote the subgroup of GL,(F2) generated by the set {s | s € S}.
W is referring to the flipping group of X.
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Flipping groups and flipping classes
Definition

Let X = (X, E) be a graph. For a vertex s € S, we associate a matrix
s € Mat,(F2), denoted by the bold type of s, as

o — 1, fu=v,orv=sanduveEE,
U1 0, else,

where u,v € S.

Definition

Let W denote the subgroup of GL,(F2) generated by the set {s | s € S}.
W is referring to the flipping group of X.

Definition

The orbits of FJ' under W are called the flipping classes of X.

v
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Dynkin diagram

s B 5 2

Flipping classes of Dynkin Diagrams and extended Dynkin diagrams are
determined by Meng-Kiat Chuah and Chu-Chin Hu in 2004, 2006

respectively.
An(n>1)

OO0 Q e e
Sp Sn—1 Spn—2 S3

Sn—1

S6
Es o—o—I—o—o
S5 S4 S3 S22 S1
s7
E7 o—O T

— O O
S6 S5 S4 S3 S»

sg

=

OO O O
S7 S6e S5 S4 S3

S2

52
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A graph with a long path

Sn

O—0+++ Qe+ O+++ O+++» O—O
Sn—1 Sn—2 Sj, Sj, Sjy S2 s1

Figure: The graph X = (S, E).
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Notations 1

Let S be a connected graph with n vertices s1, s, ..., s, that contains an
induced path s1,s,...,s,_1 of n — 1 vertices, and s, has neighbors

Sjis Sy -1 Sjy With 1 < j1 < jo-+- < jm < n—1. Let 51,5,...,5, denote
the characteristic vectors of FJ' and let s1,s;,...,s, denote the flipping
moves associated with sy, sy, ..., s, respectively.

Set

T:§1,i+1:s;si_1---sJ (1§i§n—1), n+1:=s5,.

and consider the following three sets

n = {1,2,...,7},
Mo = {ieN] <i3,>=0},
N = n-n.

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H 12 /39
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Notations 2
By using the graph structure we can compute the following value
[5]
My =" jak — okt
k=1
Let

N = |_|, if“_|1’ is Odd;
L Nu{n+1}—{A}, if|Ny]iseven
be the simple basis of FJ' as shown in the beginning of Section ??. For a
vector u € FJ let sw(u) denote the simple weight of u, i.e. the number
nonzero terms in writing u as a linear combination of elements in A. Let

U be the subspace spanned by the vectors in [1. For V C FJ' and
T C{0,1,...,n},

Vri={ueV|sw(u)e T},

and for shortness Vi, 1, .t '= Vi 1,....1;)- Let odd be the subset of
{1,2,...,n} consisting of odd integers.

BEX (REAZEASER) The Lit-Only Sigma Game on a Simple Grap 2009 £ 7 H 30 H 13 / 39
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Notations 3

Set

A = {jelnl|j=in+|N—i (mod 4)},

Bi = {jeln=1j=ii+|M|=2,n—in—i+[M]—-2 (mod 4)},
G = {jelllj=ii+Mn+2—in+2—i+|My| (mod 4)}.

Let P denote the set of orbits of the flipping puzzle on S. Then the set P
and its cardinality |P| are given in the following table according to the
different cases of the pair (|I11], n) in the first two columns.

G (EKBERYER) The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H 14 / 39
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Flipping classes of a graph with a long path

nontrivial O € P
M| n (might be repeated) P
3 S |r|1| S n— 37
|My| is odd even Ysy ’
3 S |r|1| S n— 37
IMy] is odd odd Yay )
A<Ml <n=3 e Us, U, 6

|| is even i

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H 15 / 39
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[M1] is even odd Ug;» Ug 4
M =1 Utnr1-t [(n+2)/2]
My =2 even Uin-irUg, Ug, (n+6)/2
My =2 odd Uin-i,Uc, Ug, (n+3)/2

My =n-—2,

| ||3||1| s odd odd Uodd, Uzi (n+3)/2
|r|1| =n-—- 27 UOCId? U2/7 n—2h,
. even — —= n+6)/2

My is even Uodd, U2g,ni2—2¢ ( )/

||_|1| =n- 17
||_|1| s odd even Ugt_l,gt (n + 2)/2
M| =n-1, Uah—1,2h,n—2h,,n+1—2h;
i odd e 3l 3 n + 3 2
[M1] is even Uozg—12gn+2-2g,n+3-2¢ ( )/

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H 16 / 39
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Flipping classes of line graphs

Yaokun Wau, Lit-only sigma game on a line graph, European Journal of
Combinatorics 30(2009), 84-95.

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H 17 / 39
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Problems

Determine the flipping classes of X when X is a chessboard.

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H
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Maximum-orbit-weight

For u € FJ, let w(u) denotes the Hamming weight of u, and for an

flipping class O of X, w(0O) := min{w(u) | u € O} is called the weight of
the flipping class O. The number

M(X) := max{w(0O) | O € P}

is called the maximum-orbit-weight of the graph S.

The Lit-Only Sigma Game on a Simple Grapl 2009 #7 H 30 H 19 / 39
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Maximum-orbit-weight

For u € FJ, let w(u) denotes the Hamming weight of u, and for an

flipping class O of X, w(0O) := min{w(u) | u € O} is called the weight of
the flipping class O. The number

M(X) := max{w(0O) | O € P}

is called the maximum-orbit-weight of the graph S.

@ M(X)=1if X is one of simply-laced Dynkin diagrams [Chuah and
Hu, 2004] (Borel-de Siebenthal Theorem).

G (EKBERYER)
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Maximum-orbit-weight

For u € FJ, let w(u) denotes the Hamming weight of u, and for an

flipping class O of X, w(0O) := min{w(u) | u € O} is called the weight of
the flipping class O. The number

M(X) := max{w(0O) | O € P}

is called the maximum-orbit-weight of the graph S.

@ M(X)=1if X is one of simply-laced Dynkin diagrams [Chuah and
Hu, 2004] (Borel-de Siebenthal Theorem).

@ [X. Wang, Y. Wu, 2007] and [H. Wu, G. J. Chang, 2006]
independently show M(X) < [£/2] if X is a tree with ¢ leaves.

G (EKBERYER)
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Maximum-orbit-weight
For u € FJ, let w(u) denotes the Hamming weight of u, and for an

flipping class O of X, w(0O) := min{w(u) | u € O} is called the weight of
the flipping class O. The number

M(X) := max{w(0O) | O € P}

is called the maximum-orbit-weight of the graph S.

@ M(X)=1if X is one of simply-laced Dynkin diagrams [Chuah and
Hu, 2004] (Borel-de Siebenthal Theorem).

@ [X. Wang, Y. Wu, 2007] and [H. Wu, G. J. Chang, 2006]
independently show M(X) < [£/2] if X is a tree with ¢ leaves.

@ [Y. Wu, 2009] discovers that if X is the line graph of a simple graph

[, then there is a close connection between M(X) and the edge
isoperimetric number of T.

G (EKBERYER)
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Maximum-orbit-weight
For u € FJ, let w(u) denotes the Hamming weight of u, and for an

flipping class O of X, w(0O) := min{w(u) | u € O} is called the weight of
the flipping class O. The number

M(X) := max{w(0O) | O € P}

is called the maximum-orbit-weight of the graph S.

@ M(X)=1if X is one of simply-laced Dynkin diagrams [Chuah and
Hu, 2004] (Borel-de Siebenthal Theorem).

@ [X. Wang, Y. Wu, 2007] and [H. Wu, G. J. Chang, 2006]
independently show M(X) < [£/2] if X is a tree with ¢ leaves.

@ [Y. Wu, 2009] discovers that if X is the line graph of a simple graph
[, then there is a close connection between M(X) and the edge
isoperimetric number of T.

@ When X has a long path, we give a necessary and sufficient condition
for M(X) = 1.
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Six alternative moves 2,5,2,5,2,5 of the edge 25

1 ) 5 4 1 5 5 4
3;: :6 30.: :6
1 5 5 4 1 ) 5 4
30; i6 30; :j6
1 5 5 4 1 5 5 4
30.: :6 3: :6

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H
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Coxeter group associated a graph

Let X = (S, E) denote a simple connected graph with vertex set
{s1,52,...,5n}

Definition

The Coxeter group W := W(X) of a simple connected graph X = (S, R)

is the group with the set S = {s; | 1 </ < n} of generators subject only
to relations

5,2 =1,
(sis))® =1, ifij€E,
(sis))>=1, ifij¢ E

G (EKBERSER) The Lit-Only Sigma Game on a Simple Grapl 2009 #7 H 30 H 21 /39
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Relation between Coxeter group and flipping group

@ There is a homomorphism for the Coxeter group W of X onto the
flipping group W sending generator s to the move s.

The Lit-Only Sigma Game on a Simple Grapl 2009 #7 H 30 H 22 /39
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Relation between Coxeter group and flipping group

@ There is a homomorphism for the Coxeter group W of X onto the
flipping group W sending generator s to the move s.

@ The center Z(W) of the flipping group W of X is trivial.
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Relation between Coxeter group and flipping group

@ There is a homomorphism for the Coxeter group W of X onto the
flipping group W sending generator s to the move s.
@ The center Z(W) of the flipping group W of X is trivial.

Q If |W| < oo then W/Z(W) = W, where Z(W) is the center of the
Coxter group W of X; moreover, |Z(W)| < 2.
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Relation between Coxeter group and flipping group

@ There is a homomorphism for the Coxeter group W of X onto the
flipping group W sending generator s to the move s.

@ The center Z(W) of the flipping group W of X is trivial.

Q If |W| < oo then W/Z(W) = W, where Z(W) is the center of the
Coxter group W of X; moreover, |Z(W)| < 2.

© Among all n-vertex graphs containing an induced (n — 1)-vertex path,
there are at most n — 1 flipping groups up to isomorphism.
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Relation between Coxeter group and flipping group

@ There is a homomorphism for the Coxeter group W of X onto the
flipping group W sending generator s to the move s.

@ The center Z(W) of the flipping group W of X is trivial.

Q If |W| < oo then W/Z(W) = W, where Z(W) is the center of the
Coxter group W of X; moreover, |Z(W)| < 2.

© Among all n-vertex graphs containing an induced (n — 1)-vertex path,
there are at most n — 1 flipping groups up to isomorphism.

@ If X is the line graph of a graph with m edges and n vertices, then
the flipping group W of X isomorphic to (Z/2Z)("=1(m=n+1) 5 g if
nis odd; (2/22)("=2(m=n+1) s S _if n is even.
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Reeder’'s game

s B 5 2

A configuration is an assignment of one of two color, black or white, to
each vertex of X. A move applied on a configuration is to select a vertex
v having an odd number of black neighbors and change the color of v.

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H 23 /39
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1
Reeder’'s game

51 S4

S2 S5

S3 S6

X=5+5S+5S+ S5
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1
Reeder’'s game

51 S4

S2 S5

S3 S6

X=5+5S+5S+ S5

The Lit-Only Sigma Game on a Simple Graph



2009 [ 5 E37H 5 52 B R 5100 1 5 2 o L R K 9 [
1
Reeder’'s game

51 S4

S2 S5

S3 S6

X=5+5S+5S+ S5
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Reeder’'s game

51 S4

S S5

S3 S6

X=5S+%+5s1+ S5

p1(x) =7

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H
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1
Reeder’'s game

51 S4

S S5

S3 S6

X=5S+%+5s1+ S5
pi(x) =7
pl(X) = p1(51 + S+ 54+ 55) =S+ 54+ S5

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H
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1
Reeder’'s game

51 S4

S S5

S3 S6

X=5S+%+5s1+ S5
pi(x) =7
pl(X) = p1(51 + S+ 54+ 55) =S+ 54+ S5

ps(p1(x)) =7
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27 /39



2009 | 5 ELH T 52 B P 52000 1 5% 5 o5 T I 9 o [ e B 5 2200 7 e
1
Reeder’'s game

51 S4

S S5

S3 S6

X=5S+%+5s1+ S5
pi(x) =7
pl(X) = p1(51 + S+ 54+ 55) =S+ 54+ S5

ps(p1(x)) =7
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1
Reeder’'s game

51 S4

S2 S5

S3 S6

X =514+ 5 4+ 54+ S5

p1(x) =7
p1(x) = p1(s1 + 2+ 54+ 55) = 52 + 54 + 55
ps(p1(x)) =7
p5(p1(x)) = 2+ 52 + 55

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H

28 / 39



2009 | 5 ELH T 52 B P 52000 1 5% 5 o5 T I 9 o [ e B 5 2200 7 e
Duality between Reeder’'s game and lit-only o-game

1 4
5
3 6
t t

0 0 110000 0 1
1 1 010000 1 1
O I 011000 1| _|[o
1| |1 000100 1|7 |1
1 1 0100710 1 0
0 0 000001 0 0

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H 29 /39
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Duality

The orbits of Reeder’s game are called Reeder’s classes. A graph X is

nonsingular if the determinant det(A) =1 in F», where A is the adjacency
matrix of X.

Lemma

Suppose that X is a nonsingular graph. Then there exists a bijection
between flipping classes and Reeder’s classes.

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H 30/ 39
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1
Reeder's Theorem

Theorem (2005, M. Reeder)

Suppose that X is a tree with a perfect matching, not a path. Then there
are exactly three Reeder’s classes on X.

The Lit-Only Sigma Game on a Simple Grapl 2009 #7 H 30 H 31 /39
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Orbits distinguishing

Theorem (2009, J. Goldwasser, X. Wang, Y. Wu)

Suppose that X is a nonsingular graph of n vertices. Let u € FJ be a
configuration with u; = 0 for some i. Let A; denote the i-th column of the
adjacency matrix A. Then u and u+ A; are in two different flipping classes.

The Lit-Only Sigma Game on a Simple Grapl 2009 #7 H 30 H 32 /39
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Applications

By the dual connection between Reeder's game and lit-only o-game, and
using J. Goldwasser, X. Wang, Y. Wu's Theorem to distinguish flipping
classes, Hau-wen Huang can show

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H 33 /39
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Applications

By the dual connection between Reeder's game and lit-only o-game, and
using J. Goldwasser, X. Wang, Y. Wu's Theorem to distinguish flipping
classes, Hau-wen Huang can show

Corollary

Suppose that X is a tree with a perfect matching(equivalent to X
nonsingular), not a path. Then there are exactly three flipping classes.
Furthermore the maximum-orbit-weight M(X) = 1.

The Lit-Only Sigma Game on a Simple Grapl 2009 #7 H 30 H 33 /39



2009 = 8 S = S B ER S22 1 28 T v O = B e B 5 S I T R

Applications

By the dual connection between Reeder's game and lit-only o-game, and
using J. Goldwasser, X. Wang, Y. Wu's Theorem to distinguish flipping
classes, Hau-wen Huang can show

Corollary

Suppose that X is a tree with a perfect matching(equivalent to X
nonsingular), not a path. Then there are exactly three flipping classes.
Furthermore the maximum-orbit-weight M(X) = 1.
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Applications

By the dual connection between Reeder's game and lit-only o-game, and
using J. Goldwasser, X. Wang, Y. Wu's Theorem to distinguish flipping
classes, Hau-wen Huang can show

Corollary

Suppose that X is a tree with a perfect matching(equivalent to X
nonsingular), not a path. Then there are exactly three flipping classes.
Furthermore the maximum-orbit-weight M(X) = 1.

Problem: Find an algorithm to do this.
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Generalization
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Generalization

Suppose that X is a nonsingular graph, not a line graph. Then there are
exactly three flipping classes of X.

Moreover, M(X) <2 (Hau-wen Huang, preprint).

The Lit-Only Sigma Game on a Simple Grapl 2009 £ 7 H 30 H 34 /39



2009 “F [ 5w EdiH & 22 B PRS2y 8 5 B 58 T SRR R e [ B B i 5 SR B
Generalization

Suppose that X is a nonsingular graph, not a line graph. Then there are
exactly three flipping classes of X.

Moreover, M(X) <2 (Hau-wen Huang, preprint).

The dual version of the above result does not appear in Reeder’s 2005
paper.
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Generalization

Suppose that X is a nonsingular graph, not a line graph. Then there are
exactly three flipping classes of X.

Moreover, M(X) <2 (Hau-wen Huang, preprint).

The dual version of the above result does not appear in Reeder’s 2005
paper.

Problem. Characterize the case M(X) = 1 when X is nonsingular.
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Revisit the move on Reeder’'s game

Let u € FJ be a configuration of Reeder's game on X = (S, E). Let s be
the n x n move matrix associate with the vertex s € S. We also use s to
denote the characteristic vector of s € S. Let fs(u) denote the new
configuration from u by applying the move s in Reeder’'s game on X. Then

fo(u)t = u's
= u'+ (u'As) s
= u'+<us>st

where < u,s >:= u'As is the inner product.
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Revisit the move on Reeder’'s game

Let u € FJ be a configuration of Reeder's game on X = (S, E). Let s be
the n x n move matrix associate with the vertex s € S. We also use s to
denote the characteristic vector of s € S. Let fs(u) denote the new
configuration from u by applying the move s in Reeder’'s game on X. Then

fo(u)t = u's
= u'+ (u'As) s
= u'+<us>st

where < u,s >:= u'As is the inner product.

The above function f; is called a transvection in the literature.
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Thank you for your attention.
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