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d-disjunct matrix
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d-disjunct matrix

Definition 0.1. An n × t matrix M over {0, 1} is

d-disjunct if d < t and for any one column j and any

other d columns j1, j2, . . . , jd, there exists a row i such

that Mij = 1 and Mijs
= 0 for s = 1, 2, . . . , d.
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d-disjunct matrix

Definition 0.1. An n × t matrix M over {0, 1} is

d-disjunct if d < t and for any one column j and any

other d columns j1, j2, . . . , jd, there exists a row i such

that Mij = 1 and Mijs
= 0 for s = 1, 2, . . . , d.

Example 0.2. A 2-disjunct matrix M =









1 0 0

0 1 0

0 0 1









.
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Relation to Pooling Design
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Relation to Pooling Design

A 4 × 6 1-disjunct matrix to detect the infected item C

from {A,B,C, D,E, F} :





















Tests/Items A B C D E F Output

One 1 1 1 0 0 0 → 1

Two 1 0 0 1 1 0 → 0

Three 0 1 0 1 0 1 → 0

Four 0 0 1 0 1 1 → 1




















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Relation to Pooling Design (conti.)
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Relation to Pooling Design (conti.)

If the size of defected items at most d, then a d-disjunct

matrix works for finding the defected items.
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Relation to Pooling Design (conti.)

If the size of defected items at most d, then a d-disjunct

matrix works for finding the defected items.

Why?
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Relation to Pooling Design (conti.)

If the size of defected items at most d, then a d-disjunct

matrix works for finding the defected items.

Why?

Reason 1. All the subsets of the set of items with size at

most d have different outputs.
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Relation to Pooling Design (conti.)

If the size of defected items at most d, then a d-disjunct

matrix works for finding the defected items.

Why?

Reason 1. All the subsets of the set of items with size at

most d have different outputs.

Reason 2. The tests with 0 outputs determine all the

non-infected items.
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Relation to Pooling Design (conti.)

If the size of defected items at most d, then a d-disjunct

matrix works for finding the defected items.

Why?

Reason 1. All the subsets of the set of items with size at

most d have different outputs.

Reason 2. The tests with 0 outputs determine all the

non-infected items.

Reason 3. The infected columns of are exactly those

columns contained in the output vector (view vectors as

subsets of [n]).
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Construct d-disjunct matrices
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Construct d-disjunct matrices

Theorem 0.3. (Macula 1996) Let [m] := {1, 2, . . . ,m}.

The incident matrix Wdk of d-subsets and k-subsets of

[m] is an





m

d



 ×





m

k



 d-disjunct matrix.
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The subsets of [m] when m = 4
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The subsets of [m] when m = 4

c

c c c c

c c c c c c

c c c c

c
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Wd,k when m = 4
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Wd,k when m = 4





















2−subsets
1−subsets

(12) (13) (14) (23) (24) (34)

(1) 1 1 1 0 0 0

(2) 1 0 0 1 1 0

(3) 0 1 0 1 0 1

(4) 0 0 1 0 1 1




















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(d, s)-disjunct matrix
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(d, s)-disjunct matrix

Definition 0.4. An n × t matrix M over {0, 1} is

(d, s)-disjunct if d < t and for any one column j and any

other d columns j1, j2, . . . , jd, there exist s rows

i1, i2, . . . , is such that Miuj = 1 and Miujv
= 0 for

u = 1, 2, . . . , s and v = 1, 2, . . . , d.
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(d, s)-disjunct matrix

Definition 0.4. An n × t matrix M over {0, 1} is

(d, s)-disjunct if d < t and for any one column j and any

other d columns j1, j2, . . . , jd, there exist s rows

i1, i2, . . . , is such that Miuj = 1 and Miujv
= 0 for

u = 1, 2, . . . , s and v = 1, 2, . . . , d.

A (d, s)-disjunct matrix can be used to construct a pooling

design that can find the set of defected item of size at most

d with b s−1
2
c errors allowed in the output.
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As an error-correcting code
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As an error-correcting code

Remark 0.5. Let M be an n × t (d, s)-disjunct matrix

over {0, 1}. Let C denote the set consisting of all the

boolean sum of at most d columns of M . Then C ⊆ F n
2

has cardinality





t

0



 +





t

1



 + · · · +





t

d



 and

minimum distance s.

8-a



Decoding algorithm
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Decoding algorithm

Theorem 0.6. (Huang and Weng 2003) Let M be an

n × t (d, s)-disjunct matrix over {0, 1}. Suppose the

output vector O has at most b s−1
2
c errors. Then a column

of M with at most b s−1
2
c elements not in O is an infected

column.

9-a



Example of (d, s)-disjunct matrix
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Example of (d, s)-disjunct matrix

Theorem 0.7. (Huang and Weng 2004) Macula’s

d-disjunct matrix Wdk is (d − 1, k − d + 1)-disjunct.
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Posets
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Posets

Definition 0.8. A poset P is ranked if there exists a

function rank : P → N ∪ {0} such that for all elements

x, y ∈ P ,

y covers x ⇒ rank(x) − rank(y) = 1.

Let Pi denote the elements of rank i in P . P is atomic if

each elements w is the least upper bound of the set

P1 ∩ {y ≤ w|y ∈ P}.
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Pooling Spaces
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Pooling Spaces

Definition 0.9. A pooling space is a ranked poset P

that the for each element w ∈ P the subposet induced on

w+ := {y ≥ w|y ∈ P} is atomic.
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A Nonexample of Pooling Spaces
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A Nonexample of Pooling Spaces

c

c c

c c
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Every interval in P is atomic, but P is not a pooling space.
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d-disjunct matrices in Pooling Spaces
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d-disjunct matrices in Pooling Spaces

Theorem 0.10. (Huang and Weng 2004) Let P be a

pooling space. Then the incident matrix Pdk of rank d

elements Pd and rank k elements Pk is a d-disjunct

matrix. In fact, Pdk is (d′, sd′)-disjunct matrix for some

large integer sd′ depending on d′ ≤ d and P .
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Examples of Pooling Spaces
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Examples of Pooling Spaces

Hamming matroids, the attenuated spaces, quadratic polar

spaces, alternating polar spaces, quadratic polar spaces (two

types), Hermitian polar spaces (two types). These are called

quantum matroids.
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More Examples of Pooling Spaces
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More Examples of Pooling Spaces

1. All the partitions of a finite set X ordered by refinement;
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More Examples of Pooling Spaces

1. All the partitions of a finite set X ordered by refinement;

2. Fix a graph G. The partitions of the vertices of G with

connected blocks, ordered by refinement.
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More Examples of Pooling Spaces

1. All the partitions of a finite set X ordered by refinement;

2. Fix a graph G. The partitions of the vertices of G with

connected blocks, ordered by refinement.

Note. 1 is the special case of 2 with G the complete graph.

16-c



Connected partitions of the 4-cycle

17



Connected partitions of the 4-cycle

c

c c c c

c c c c c c

c
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Combinatorial Geometry

Definition 0.11. A combinatorial geometry is a pair

(X,F) where X is a set of points and where F is a

family of subsets of X called flats such that

(1) F is closed under intersection;

(2) ∅, X, {x} ∈ F for all x ∈ X;

(3) For E ∈ F , E 6= X, the flats that cover E in F

partition the remaining points.
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Combinatorial Geometry is a Pooling Space

Theorem 0.12. Let P be a combinatorial geometry.

Then (P,⊆) is a pooling space.
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The end
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The end

Thank You!
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