Applied Mathematical Sciences, Vol. 15, 2021, no. 12, 553-557
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/ams.2021.914558

A Note on the Largest Real Eigenvalue of a Nonnegative Matrix

Louis Kao
Department of Applied Mathematics
National Yang Ming Chiao Tung University
1001 Ta Hsueh Road, Hsinchu, Taiwan
Chih-wen Weng
Department of Applied Mathematics
National Yang Ming Chiao Tung University 1001 Ta Hsueh Road, Hsinchu, Taiwan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2021 Hikari Ltd.

Abstract

Let C be a nonnegative square matrix of order n and fix a 2 -subset $\{a, b\}$ of $\{1,2, \ldots, n\}$. Assume that the principal submatrix $C[a, b]$ of C restricted to $\{a, b\}$ is symmetric with constant diagonals. Let $C^{\prime}=\left(c_{i j}^{\prime}\right)$ be a nonnegative square matrix of order n constructed from $C=\left(c_{i j}\right)$ such that $C^{\prime}[a, b]=C[a, b], C^{\prime}[[n]-\{a, b\}]=C[[n]-\{a, b\}]$, and for the remaining entries, $c_{i b}^{\prime}=c_{i b}-t_{i}, c_{i a}^{\prime}=c_{i a}+t_{i}, c_{b j}^{\prime}=c_{b j}-s_{j}$ and $c_{a j}^{\prime}=c_{a j}+s_{j}$ for some prescribed parameters t_{i} and s_{j} satisfying $\max \left(0, c_{i b}-c_{i a}\right) \leq t_{i} \leq c_{i b}$ and $\max \left(0, c_{b j}-c_{a j}\right) \leq s_{j} \leq c_{b j}$, where $i, j \in[n]-\{a, b\}$. We will show that the largest real eigenvalue of C is at most the largest real eigenvalue of C^{\prime}.

Mathematics Subject Classification: 05C50, 15A42

Keywords: nonnegative matrix, eigenvalue, Kelmans transformation

1 Introduction

The Kelmans transformation of an undirected graph was defined by A.K. Kelmans in 1981 [3]. We will generalize it to a matrix version.

Let $C=\left(c_{i j}\right)$ be a nonnegative square matrix of order n and use the notation $[n]=\{1,2, \ldots, n\}$. For $\alpha \subseteq[n]$, let $C[\alpha]$ denote the principal submatrix of C restricted to the entries in $\alpha \times \alpha$. Fix a 2 -subset $\{a, b\}$ of $[n]$, and assume that C is symmetric on $\{a, b\}$, that is

$$
C[a, b]=\left(\begin{array}{cc}
s & t \tag{1}\\
t & s
\end{array}\right)
$$

for some scalars s, t. For every $i, j \in[n]-\{a, b\}$, choose t_{i} and s_{j} such that $\max \left(0, c_{i b}-c_{i a}\right) \leq t_{i} \leq c_{i b}$ and $\max \left(0, c_{b j}-c_{a j}\right) \leq s_{j} \leq c_{b j}$. We define a new matrix C^{\prime} of order n from C by shifting the portion t_{i} of $c_{i b}$ to $c_{i a}$ and the portion s_{j} of $c_{b j}$ to $c_{a j}$ such that in the new matrix $C^{\prime}=\left(c_{i j}^{\prime}\right)$ have $c_{i a}^{\prime} \geq c_{i b}^{\prime}$ and $c_{a j}^{\prime} \geq c_{b j}^{\prime}$, where $i, j \in[n]-\{a, b\}$. The following is an illustration of

$$
C^{\prime}=\begin{gathered}
i \\
{ }_{a} \\
b
\end{gathered}\left[\begin{array}{ccc}
{ }^{j} & a & b \\
* & c_{i a}+t_{i} & c_{i b}-t_{i} \\
\\
c_{a j}+s_{j} & s & t \\
c_{b j}-s_{j} & t & s
\end{array}\right] \quad(i, j \in[n]-\{a, b\}) .
$$

Formally C^{\prime} is defined from C by setting $C^{\prime}[a, b]=C[a, b], C^{\prime}[[n]-\{a, b\}]=$ $C[[n]-\{a, b\}], c_{i b}^{\prime}=c_{i b}-t_{i}, c_{i a}^{\prime}=c_{i a}+t_{i}, c_{b j}^{\prime}=c_{b j}-s_{j}$ and $c_{a j}^{\prime}=c_{a j}+s_{j}$ for $i, j \in[n]-\{a, b\}$. The matrix C^{\prime} is referred to as the Kelmans transformation of C from b to a with respect to t_{i} and s_{j}.

In the above setting, if $C=\left(c_{i j}\right)$ is the adjacency matrix of an undirected graph G of order n (i.e., C is a symmetric binary matrix with zero diagonals), $t_{i}=\max \left(0, c_{i b}-c_{i a}\right)$ and $s_{j}=\max \left(0, c_{b j}-c_{a j}\right)$, then the Kelmans transformation C^{\prime} of C from b to a with respect to t_{i} and s_{j} is essentially the Kelmans transformation of G defined by A.K. Kelmans.

It is well known that a nonnegative matrix has a real eigenvalue. P. Csikvári proved that the largest real eigenvalue will not be decreased after an Kelmans transformation of an undirected graph [2]. His method is by the Rayleigh quotient and can be directly extended to any symmetric matrices. Our main theorem is a generalization of this result to a nonnegative matrix which is not necessary to be symmetric.

Theorem 1.1. Let $C=\left(c_{i j}\right)$ denote a nonnegative square matrix of order n such that C is symmetric on $\{a, b\}$ for some $1 \leq a, b \leq n$. For every pair $i, j \in[n]-\{a, b\}$, choose t_{i}, s_{j} such that $\max \left(0, c_{i b}-c_{i a}\right) \leq t_{i} \leq c_{i b}$ and $\max \left(0, c_{b j}-c_{a j}\right) \leq s_{j} \leq c_{b j}$. Let C^{\prime} be the Kelmans transformation from b to a with respect to t_{i} and s_{j}. Then the largest real eigenvalue of C is no larger than the largest real eigenvalue of C^{\prime}.

The symmetric condition for C on $\{a, b\}$ in Theorem 1.1 is necessary by the following counterexample. Consider the 4×4 matrices

$$
C=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right), \quad C^{\prime}=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

The matrix C^{\prime} is obtained from C by applying Kelmans transformation from 4 to 3 with respect to $t_{1}=0, t_{2}=1$ and $s_{1}=s_{2}=0$, while the matrix C is not symmetric on $\{3,4\}$. By direct computing, the largest real eigenvalue of C is closed to 2.234 which is strictly greater than 2.148 , the approximate of the largest real eigenvalue of C^{\prime}.

It is well-known that the largest real eigenvalue of a nonnegative matrix is associated with a nonnegative eigenvector, called Perron vector. Moreover if the matrix is irreducible then its Perron vector is positive (e.g., [1, Theorem 2.2.1]). Our proof of Theorem 1.1, which will be in the section after the preliminaries, utilizes Perron vectors in a way inspired by [4].

2 Preliminaries

In the section, we shall introduce a few basis properties of Kelmans transformation of nonnegative matrices for later use. For a nonnegative square matrix M, let $\rho(M)$ denote the largest real eigenvalue of M. For two matrices M, N of the same size, we use the notation $M \leq N$ if $N-M$ is a nonnegative matrix. Let I_{n} denote the identity matrix of order n and $E_{i j}$ denote the binary matrix of order n which has a unique 1 in the position $i j$. Note that $\left(I_{n}+E_{i j}\right)^{-1}=I_{n}-E_{i j}$ and $\left(\left(I_{n}+E_{i j}\right)^{-1}\right)^{t}=\left(\left(I_{n}+E_{i j}\right)^{t}\right)^{-1}$.

Lemma 2.1. Let $C=\left(c_{i j}\right)$ denote a nonnegative square matrix of order n such that C is symmetric on $\{a, b\}$ for some $1 \leq a, b \leq n$. For every pair $i, j \in[n]-\{a, b\}$, choose t_{i}^{\prime}, s_{j}^{\prime} such that $\max \left(0, c_{i b}-c_{i a}\right) \leq t_{i}^{\prime} \leq c_{i b}$ and $\max \left(0, c_{b j}-c_{a j}\right) \leq s_{j}^{\prime} \leq c_{b j}$, and set $t_{i}^{\prime \prime}=c_{i a}-c_{i b}+t_{i}$ and $s_{j}^{\prime \prime}=c_{a j}-c_{b j}+s_{j}$. Then the following (i)-(iii) hold.
(i) $\max \left(0, c_{i a}-c_{i b}\right) \leq t_{i}^{\prime \prime} \leq c_{i a}$ and $\max \left(0, c_{a j}-c_{b j}\right) \leq s_{j}^{\prime \prime} \leq c_{a j}$;
(ii) If C^{\prime} (resp. $\left.C^{\prime \prime}\right)$ is the Kelmans transformation from b to a (resp. from a to b) with respect to t_{i}^{\prime} and s_{j}^{\prime} (resp. with respect to $t_{i}^{\prime \prime}$ and $s_{j}^{\prime \prime}$), then $\rho\left(C^{\prime}\right)=\rho\left(C^{\prime \prime}\right)$;
(iii) As the notation C^{\prime} in (ii), we have $\left(I_{n}+E_{b a}\right) C\left(I_{n}+E_{b a}\right)^{t} \leq\left(I_{n}+\right.$ $\left.E_{b a}\right) C^{\prime}\left(I_{n}+E_{b a}\right)^{t}$.

Proof. (i) Since $t_{i}^{\prime \prime}=c_{i a}-c_{i b}+t_{i}^{\prime}$ and

$$
\max \left(0, c_{i a}-c_{i b}\right)=c_{i a}-c_{i b}+\max \left(0, c_{i b}-c_{i a}\right) \leq c_{i a}-c_{i b}+t_{i}^{\prime} \leq c_{i a}
$$

we have $\max \left(0, c_{i a}-c_{i b}\right) \leq t_{i}^{\prime \prime} \leq c_{i a}$. Similarly, we have $\max \left(0, c_{a j}-c_{b j}\right) \leq$ $s_{j}^{\prime \prime} \leq c_{a j}$.
(ii) From the definition of $C^{\prime}=\left(c_{i j}^{\prime}\right)$ and $C^{\prime \prime}=\left(c_{i j}^{\prime \prime}\right)$, we know $C^{\prime \prime}[a, b]=$ $C^{\prime}[a, b], C^{\prime \prime}[[n]-\{a, b\}]=C^{\prime}[[n]-\{a, b\}]$,

$$
\begin{aligned}
c_{i b}^{\prime \prime} & =c_{i b}+t_{i}^{\prime \prime}=c_{i b}+c_{i a}-c_{i b}+t_{i}=c_{i a}^{\prime} \\
c_{i a}^{\prime \prime} & =c_{i a}-\left(c_{i a}-c_{i b}+t_{i}\right)=c_{i b}^{\prime}
\end{aligned}
$$

and similarly $c_{b j}^{\prime \prime}=c_{a j}^{\prime}, c_{a j}^{\prime \prime}=c_{b j}^{\prime}$ for $i, j \in[n]-\{a, b\}$. This shows that $C^{\prime \prime}=P^{-1} C^{\prime} P$, where $P=I-E_{a a}-E_{b b}+E_{a b}+E_{b a}$. Thus $\rho\left(C^{\prime}\right)=\rho\left(C^{\prime \prime}\right)$.
(iii) The Kelmans transformation from b to a moves a nonnegative portion of row b of C to row a, but the multiplication of $\left(I_{n}+E_{b a}\right)$ from the left will add the whole column a into the column b. Similarly for the column part. Hence (iii) follows.

3 The proof of Theorem 1.1

Let C and C^{\prime} be as described in the assumption of Theorem 1.1. To prove $\rho(C) \leq \rho\left(C^{\prime}\right)$ we might assume $s \geq t$ in (1), since if we know this and $s<t$ then applying the matrix $C+(t-s) I_{n}$ to as the role of C and considering the corresponding Kelmans transformation $C^{\prime}+(t-s) I_{n}$, we still have

$$
\rho(C)=\rho\left(C+(t-s) I_{n}\right)-(t-s) \leq \rho\left(C^{\prime}+(t-s) I_{n}\right)-(t-s)=\rho\left(C^{\prime}\right) .
$$

Let row vector $w^{t}=\left(w_{i}\right)$ denote the left Perron vector for $\rho(C)$ of C.
We first assume $w_{a} \geq w_{b}$. Set $v^{t}=w^{t} Q^{-1}$, where $Q=I_{n}+E_{b a}$. Thus

$$
\begin{equation*}
v^{t} Q C=w^{t} C=\rho(C) w^{t}=\rho(C) v^{t} Q \tag{2}
\end{equation*}
$$

Note that v is nonnegative since $v_{i}=w_{i} \geq 0$ for $i \neq a$ and $v_{a}=w_{a}-w_{b} \geq 0$.
For $\epsilon>0$, let $C^{\prime \epsilon}=C^{\prime}+\epsilon J_{n}$, where J_{n} is the matrix of order n with entries all 1's. By Lemma 2.1(iii) and using $Q^{-1} C^{\prime} Q^{t} \leq Q^{-1} C^{\prime \epsilon} Q^{t}$, we have

$$
\begin{equation*}
Q C Q^{t} \leq Q C^{\prime \epsilon} Q^{t} \tag{3}
\end{equation*}
$$

From the constriction of $C^{\prime \epsilon}$ and the assumption $s \geq t$ in the beginning, the matrix $\left(Q^{t}\right)^{-1} C^{\prime \epsilon} Q^{t}$ is nonnegative. Let u^{ϵ} denote a right Perron vector for $\left(Q^{t}\right)^{-1} C^{\prime \epsilon} Q^{t}$. Since $C^{\prime \epsilon}$ and $\left(Q^{t}\right)^{-1} C^{\prime \epsilon} Q^{t}$ are similar, we have $\rho\left(C^{\prime \epsilon}\right)=$ $\rho\left(\left(Q^{t}\right)^{-1} C^{\prime \epsilon} Q^{t}\right)$ and $\left(Q^{t}\right)^{-1} C^{\prime \epsilon} Q^{t} u^{\epsilon}=\rho\left(C^{\prime \epsilon}\right) u^{\epsilon}$, which implies

$$
\begin{equation*}
C^{\prime \epsilon} Q^{t} u^{\epsilon}=\rho\left(C^{\prime \epsilon}\right) Q^{t} u^{\epsilon} . \tag{4}
\end{equation*}
$$

Because of the irreducibility of $C^{\prime \epsilon}, Q^{t} u^{\epsilon}>0$.
Multiplying the nonnegative vector u^{ϵ} from the right to both terms of (3) and applying (4),

$$
\begin{equation*}
Q C Q^{t} u^{\epsilon} \leq Q C^{\prime \epsilon} Q^{t} u^{\epsilon}=\rho\left(C^{\prime \epsilon}\right) Q Q^{t} u^{\epsilon} \tag{5}
\end{equation*}
$$

Multiplying the nonnegative row vector v^{t} from the left to the first and last terms in (5) and using (2), we have

$$
\begin{equation*}
\rho(C) v^{t} Q Q^{t} u^{\epsilon}=v^{t} Q C Q^{t} u^{\epsilon} \leq \rho\left(C^{\prime \epsilon}\right) v^{t} Q Q^{t} u^{\epsilon} . \tag{6}
\end{equation*}
$$

As $w^{t}=v^{t} Q$ nonnegative and $Q^{t} u^{\epsilon}$ positive, $v^{t} Q Q^{t} u^{\epsilon}$ is positive. Deleting the positive term $v^{t} Q Q^{t} u^{\epsilon}$ from both sides of (6), we have $\rho(C) \leq \rho\left(C^{\prime \epsilon}\right)$ for any $\epsilon>0$ and by continuity

$$
\rho(C) \leq \lim _{\epsilon \rightarrow 0^{+}} \rho\left(C^{\prime \epsilon}\right)=\rho\left(C^{\prime}\right)
$$

Next assume $w_{b} \geq w_{a}$. Let $C^{\prime \prime}$ denote the Kelmans transformation of C from a to b with respect to $c_{i a}-c_{i b}+t_{i}$ and $c_{a j}-c_{b j}+s_{j}$. By the previous case, we have $\rho(C) \leq \rho\left(C^{\prime \prime}\right)$, and by Lemma 2.1(ii), $\rho\left(C^{\prime \prime}\right)=\rho\left(C^{\prime}\right)$. Hence $\rho(C) \leq \rho\left(C^{\prime}\right)$.

Acknowledgements. This research is supported by the Ministry of Science and Technology of Taiwan under the project MOST 109-2115-M-009-007 -MY2.

References

[1] A.E. Brouwer, W.H. Haemers, Spectra of graphs, Springer, 2012. https://doi.org/10.1007/978-1-4614-1939-6
[2] P. Csikvári, On a conjecture of V. Nikiforov, Discrete Math., 309 (2009), 4522-4526. https://doi.org/10.1016/j.disc.2009.02.013
[3] A.K. Kelmans, On graphs with randomly deleted edges, Acta Mathematica Academiae Scientiarum Hungaricae, 37 (1981), 77-88.
https://doi.org/10.1007/bf01904874
[4] Y.-J. Cheng, C.-W. Weng, A matrix realization of spectral bounds of the spectral radius of a nonnegative matrix, arXiv:1711.03274.

Received: July 25, 2021; Published: August 6, 2021

