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Abstract

Let T denote a tree with at least three vertices. Observe that T
contains a vertex which has at least two neighbors of degree one or two.
A class of algorithms on trees related to the observation are discussed
and characterized. One of the example is an algorithm to compute the
minimum rank m(7’) of the symmetric matrices with prescribed graph
T, which is easier to process than the algorithm previous found by P.
Nylen[Linear Algebra Appl. 248:303-316(1996)]. Two interpretations
of the number m(T') in terms of some combinatorial properties on
trees are given.
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1 Introduction and results.

Let T' denote a tree with n(7T') vertices. We also use T as its vertex set.
We refer the reader to [3, p376-p388]| for the definition and the properties of
trees. For a vertex subset U C T let T'\ U denote the subgraph induced
on the vertex subset 7'\ U of T. Let p be a vertex of T, and let Tpl, cee TIf
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denote the connected components of 7'\ {p}. Note that each T}, is a tree.
Observe
n(T) =n(T))+ - +n(T)) + 1. (1)

Let P, denote the simple path with n vertices. Line (1) can be viewed as
a trivial algorithm on trees to compute n(7") provided the initial condition
n(P;) = 1. The choice of a vertex p does not affect the value n(T).

We shall give another algorithm on trees. We need a few definitions first.
For an n x n symmetric matrix A = [a;;], we associate with it the graph I'(A)
having n vertices labeled 1,2, ... ,n. For ¢ # j, the unordered pair (i, j) will
be an edge in I'(A) if and only if a;; # 0. Given a graph G on n vertices, we
define the number m(G) by

m(G) := min{rank A | I'(4) = G}. (2)
The study of m(G) can be found in [1], [2], [4]. Observe
m(Py) =0,m(P) = 1. (3)

A vertex p of T is called appropriate if at least two of the connected com-
ponents in 7"\ {p} are the simple paths (one or more vertices) which were
connected to p through an endpoint. It is not difficult to see that every tree
T with at least 3 vertices has an appropriate vertex. See [1, Lemma 3.1] for
details. Provided the initial conditions in (3), P. Nylen[1] gives the algorithm

m(T):m(Tpl)+---+m(TIf)+2 (4)
to compute m(T"), where n(7") > 3 and p is an appropriate vertex of T. The

choice of p among the appropriate vertices of T' does not affect the number
m(T) also.

Motivated by the above definition, we define a vertex p of T" to be typical
if p has at least two neighbors of degrees 1 or 2 in 7. It is immediate from
the definition that an appropriate vertex is a typical vertex. In Figure 1, the
vertices labeled 2, 4, 6, 11 are typical and only the vertices labeled 2, 11 are
appropriate.
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We shall prove in Theorem 1.7 that the condition p being appropriate
in line (4) can be replaced by p being typical. We study a general class of
algorithms on trees first. Fix three reals a, b, c. We assign a tree T" with the
real numbers f(T') recursively by the following rules:

f(P) =a, f(P) =0, (5)

JT) = [(T,) +-+ [(T) +e (6)
where p is a typical vertex of 7. Note that f(7) may not have a unique
solution, since the choice of a typical vertex p may be different. For a = 1,
b=2¢c=1, f =n, (5)-(6) is the case of (1) with p typical. We list our
results in this section and the proofs shall be in next section.

Lemma 1.1. Suppose the algorithm in (5)-(6) generates a unique solution
f(T) for each tree T. Then 3a — 2b+ ¢ = 0.

We shall prove the converse of Lemma 1.1 in Theorem 1.4. In fact, if
3a — 2b+ ¢ = 0 then we can express f(7) into a linear combination of n(7)
and the number s(7") defined below. For a vertex subset U C T, let ¢r(U)
denote the number of connected components in the subgraph 7"\ U. The
separating number of a tree T' is the number

s(T) ;= max{er(U) —|U| | UCT}. (7)

U is a separating set of T if ep(U) — |U| = s(T'). Note that if U is a separating
set of T, T'\ U is a union of simple paths. Observe

s(P) =1,s(P) =1. (8)

Theorem 1.2 gives an algorithm to construct a separating set, and to deter-
mine the separating number of a tree.
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Theorem 1.2. Let T be a tree with at least 3 vertices and p be a typical
vertex of T'. Let Tpl, ..., T} be the connected components of T'\ {p}. Let U be
a subset of vertices of T" containing p. Then U is a separating set of T if and
only if for each i (1 <i<t),UN TZf is a separating set of Tzf. Furthermore,

s(T) = 8(Tp1) 4+ s(TH) — 1. (9)

Note that (8)-(9) is the case a = 1, b =1, ¢ = —1 and f = s of (5)-(6).
It follows from (8)-(9) that s(P,) = 1. Corollary 1.3 improves the algorithm
in Theorem 1.2.

Corollary 1.3. Let U be a subset of the typical vertices of T satisfying the
following (*) condition of 7T":

(*) Each vertex of U with degree 2 in 7" is not adjacent to other vertices in

U.

Let T}, - - - ,TlUlbe the connected components of 7'\ U. Suppose S; is a sepa-
rating set of 77, (1 < j <1). Then

vu(l sy

1<5<
is a separating set of T. Furthermore,

s(T) = s(T}) + -+ s(T}) — |U|. (10)

The following theorem shows that n(7T") and s(7T") span all the functions
defined on trees satisfying (5)-(6).

Theorem 1.4. Suppose 3a —2b+c = 0. Then f(T') are numbers generated
from (5)-(6) for trees T"if and only if

1) = 2 En(my + 2

s(T) (11)

for trees T'. In particular, f(7") has a unique solution for each tree 7'



For graph theoretical interest, we give another interpretation of s(7T") in
Corollary 1.6. Let e(T") denote the number of edges in T'. Note that e(T") =
n(T) — 1. A subset F' of the edge set E(T') of T dissolves the tree T if the
subgraph 7'\ F' obtained from T by deleting all edges in F' is a disjoint union
of simple paths. Set

s*(T) :=min{|F| | F C E(T) dissolves T'}. (12)

An edge subset F'is a separating edge set of T'if F' dissolves T and |F| =
s*(T'). Observe s*(P,) = 0.

Theorem 1.5. Let T be a tree with at least 3 vertices and p be a typ-
ical vertex of degree t. Let ey, ---, e; denote the edges incident on p, and
Tpl, ..., T} the connected components of T\ {p}. Assume each of e, 1, ¢; is
incident on a vertex different from p of degree at most 2 in 7. Suppose F; is
a separating edge set of Tlf (1 <i<t). Then

{617"'7€t—2}u U E

1<i<t
is a separating edge set of T. Furthermore,

s'(T) = s*(T)) + -+ s*(Ty) +t — 2. (13)

p

Equivalently, g(T) := e(T) — s*(T) satisfies

9(T) = g(T,) + -+ 9(T;) + 2. (14)
Corollary 1.6.
s(T) =s"(T) + 1. (15)

Theorem 1.7. Let T be a tree with at least 3 vertices and p be a typical
vertex of degree t. Let Tpl, ..., T} be the connected components of T\ {p}.
Then

m(T) =m(T)) + -+ +m(T}) + 2, (16)

p
where m(T) is defined in (2).



Following the above lines, we reprove the following Corollary which was
proved by C. R. Johnson and A.L. Duarte[5].

Corollary 1.8. m(T) =e(T) — s*(T) =n(T) — s(T).

To end this section, we show how to compute m(T) for the tree T  in
Figure 1. The best algorithm is corollary 1.3. We set U = {2,4,6,11}
which of course satisfies (*) condition of Corollary 1.3. Since T\ U contains
8 simple paths, the separating number s(7) = 8 — 4 = 4 by (10). Now
m(T) =13 — 4 =9 by Corollary 1.8.

2 Proofs of results.

Proof of Lemma 1.1. Suppose the algorithm in (5)-(6) generates a unique
solution f(7T') for each tree T'. Considering the simple path Ps of three vertices,
the middle vertex is typical, so f(P;) = 2a + ¢ by (5)-(6). For the simple
path Pj of five vertices, there are essentially two different ways to choose a
typical vertex. According to these two ways,

f(B5) = [(R)+ f(P»)+c
= 2b+ec,

and

f(Ps) = f(P)+ f(Ps) +c
=a+ (2a+c)+ec

Hence 3a — 20+ c = 0.
Proof of Theorem 1.2. We find an upper bound of s(7T") first. Let V
denote a vertex subset of T. We shall prove

cr(V) = V[ < s(T)) + -+ s(T%) — 1. (17)



Set Vi =V NT, (1<i<t). Supposep € V. Then

t
VI=1+>_Vil, (18)

=1

and the components in 7'\ V' are exactly those in 7))\ V; (1 < i <t). Hence

er(V) = V| = zkgWﬂ—U+§y%D

= > (ery (Vi) = Vi) =

i=1

s(T)) + -+ s(T) — 1. (19)

p p

IN

Suppose p € V. Then

t
Vi3 Vi (20)
i=1
Let u denote the number of neighbors of p in T\ V. Each of the u vertices is
in a connected component of Tzf \ V; which contains it, and p merges these u
components into a single connected component of 7'\ V. Then

cr(V)y=1—u+ ZCT;;(V;). (21)

=1

Let v denote the number of neighbors of p in V' which have degrees 1 or 2 in
T'. Since each of these v vertices has degree 0 or 1 in the subgraph 7 g which
contains it, and by the fact, a separating set contains no endpoints, we have
the corresponding V; is not a separating set of Tlﬁ. Hence there are at least v
indices ¢ such that
crs (Vi) = Vil +1 < s(T3).
Then
U‘i‘Z(CT%( — Vi) <> s(T;, (22)
i=1 =1
Note that
u+v > 2, (23)



since p is typical. Then by (20)-(23),

cr(V)—|V]| = 1—U+ZCT'L Z\V!
=1
= 1—U+ZCT1 — Vi)
i=1
< (1)) + --—i—s(TIf)—i-l—u—v
< s(T)) 4+ s(Ty) — 1. (24)

This proves (17). To prove Theorem 1.2, set V = U in (17). Then p € V.
Suppose V; = V N T is a separating set of T, for all 7. Then equality holds
n (19). Hence for the vertex set V, ¢p (V) — |V| attains its maximum in (17).
We conclude V' is separating set of T, and (9) holds. To prove the other

direction, suppose V' is a separating set of 7. Then equality holds in (17) and
(19). This forces

ey (Vi) = Vil = s(T;) (1<i<t),

where V; = VN T}, Hence for each i (1 <i<t), VNT!is a separating set
of T;). This proves the theorem.

Proof of Corollary 1.3.  We prove the corollary by induction on the
cardinality of U. This is clear if U is empty. Assume U is not empty. Pick
p € U. Let Tpl, --+, T} denote the connected components of 7'\ {p}. Fix an
integer 7 (1 <14 <t). Observe that T, contains those T, it intersects. First
we prove that

unTHu( U 9 (25)

S cTi
is a separating set of 7!, and
s(TH = > s(T)) - [UNTL. (26)
T} CT;

(25)-(26) follow from induction, if we prove U NT} contains typical vertices
of T, satisfying (*) condition of T};. Let z denote the neighbor of p in T}.
Note that for vertices in T;, the degrees in T" and the degrees in Tlf are the
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same except the vertex x whose degrees are decreased by 1. Hence we only
need to show that if z € U then z is also typical in Tzf, and furthermore, if x
has degree 2 in 77 then x is not adjacent to other vertices in U NT}. Suppose
x € U. Then p has degree at least 3, since U satisfies the (*) condition of
T. Hence x is also typical in T ; by the definition of typical. Furthermore,
suppose z has degree 2 in 7. By the definition of typical again, the two
neighbors of z in T} have degrees 1 or 2 in T', and then are not contained in
U since U satisfies the (*) condition of 7. This proves (25)-(26). By applying
Theorem 1.2 to (25)-(26),

{ptu U (WnmyuU s

1<i<t S;CT}

= Uvu(l s

1<yl
is a separating set of T, and
s(T) = s(T))+-+s(T))—1
= > (X s(Ty)—-lUnT))~1
1S iy

= s(T})+---+s(T)) —|U|.

This proves the corollary.

Proof of Theorem 1.4. First assume f(7T') are numbers generated from
(5)-(6). We prove by induction on the number n(7). Note that n(P;) = 1,
n(Py) = 2, s(P) = s(P) =1, f(P1) = a, f(P,) = b. Hence (11) can be
checked directly if n(7T") < 2. Assume n(7) > 3. Pick a typical vertex p in 7.
By (6), induction, (1) and (9), we obtain

[T) = HT)+ -+ [(T,) +c

a+cd : a—cd

= 5 Zn(T;)—I— 5 ZS(T;)+C




This proves the necessary condition (11). f(T') has a unique solution, since
n(T), s(T) in (11) are well-defined functions. For the other direction, we
assume (11) holds. (5) can be check directly. Reversing above four equalities
in (27), we obtain f(7) satisfies (6). This proves the theorem.

Proof of Theorem 1.5. We give a lower bound of s*(7") first. Suppose
F' C E(T) dissolves T. We shall prove
|F'| > s*(T)) + -+ s* (1) +t — 2. (28)

Set Fj = F'N E(T}) (1 <i<t). Since the vertex p has degree ¢ in T', and
T\ F'" are simple paths, F’ contains at least ¢t — 2 edges incident on p. Hence

[F[ > [P+ + [ F + =2 (29)
Observe that F} dissolves Tg. Hence
[F>s"(T;) (1<i<t). (30)
(28) follows from (29)-(30). To prove the theorem, set

Fr={er, e} U( | Fo).

1<i<t

Hence F! = F;. Observe F’ dissolves T, and equalities hold in (29)-(30).
Hence equality holds in (28). This proves that (13) holds and F” is a sepa-
rating edge set of T'. To prove (14), observe

g(T) = e(T)—s"(T)
= eT)—s"(T))— - —s"(T}) =t +2
= . (e(T;) — 3*(Tg)) + 2
= _._ g(Tg) + 2

Proof of Corollary 1.6. With the notation of Theorem 1.5, observe
g(P,) = e(P,) — s*(P,) =n — 1, especially g(P1) =0 g(P) = 1. Hence (14)
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is the case f = ¢g,a=0,b=1,and ¢ = 21in (5)-(6). We obtain e(T)—s*(T) =
n(T) — s(T) by (11). Then s(T") = s*(T') + 1, since n(T) — e(T) = 1.

Proof of Theorem 1.7. m(T) is the unique solution of the algorithm in
(3)-(4). However (3)-(4) is a special case of (5)-(6) with p appropriate, a = 0,
b= 1and ¢ = 2. Since 3a — 20+ ¢ = 0, the algorithm in (5)-(6) with p typical
has the unique solution m(7T") by Theorem 1.4.

Proof of Corollary 1.8. The result follows by applying (3), (16) to (11)
using (15).
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