NATIONAL YANG MING CHIAO TUNG UNIVERSITY

Real Analysis Ph.D. Qualifying Exam, Spring 2023

- 1. Let $1 \leq p < \infty$. All parts refer to Lebesgue measure on \mathbb{R} .
 - (a) (5%) Give an example where $\{f_n\}$ converges to f pointwise, $\|f_n\|_p < M < \infty$ for all n, and $\|f_n f\|_p \nrightarrow 0$.
 - (b) (10%) Show that if $\{f_n\}$ converges to f pointwise and $||f_n||_p \to ||f||_p$, then $||f_n f||_p \to 0$.
- 2. (a) (10%) Given $n \in \mathbb{N}$, show that $(1 + \frac{x}{n})^n \le e^x$ for $x \ge 0$.
 - (b) (5%) Evaluate

$$\lim_{n\to\infty} \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx.$$

3. (a) (10%) Suppose that $0 . Show that if <math>f \in L^p(\mathbb{R}^n) \cap L^r(\mathbb{R}^n)$, then

$$||f||_q \le ||f||_p^{\lambda} ||f||_r^{1-\lambda},$$

where $\lambda \in (0,1)$ is defined by $q^{-1} = \lambda p^{-1} + (1-\lambda)r^{-1}$. (Hint: Consider two cases: (i) $r = \infty$, (ii) $r < \infty$.)

(b) (10%) Assume $f \in L^r(\mathbb{R}^n)$ for some $0 < r < \infty$. Show that

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

- 4. Suppose that $\phi \in L^1(\mathbb{R}^n)$ is nonnegative with integral 1. Set $\phi_{\epsilon}(x) = \epsilon^{-n}\phi(x/\epsilon)$, $\epsilon > 0$.
 - (a) (10%) Prove that for all M > 0,

$$\lim_{\epsilon \to 0} \int_{\{\|x\| > M\}} \phi_{\epsilon}(x) dx = 0.$$

(b) (10%) Let $f \in L^{\infty}(\mathbb{R}^n)$. Prove that

$$\lim_{\epsilon \to 0} \int_{\mathbb{R}^n} f(x - y) \phi_{\epsilon}(y) dy = f(x)$$

at every point x of continuity of f.

5. (10%) Suppose that x_1, \ldots, x_n are linearly independent elements of a normed linear space X. Show that there is a constant c > 0 such that

$$\|\lambda_1 x_1 + \dots + \lambda_n x_n\| \ge c(|\lambda_1| + \dots + |\lambda_n|)$$

for all scalars $\lambda_1, \ldots, \lambda_n$.

6. (20%) Let $f_n:[0,1]\to\mathbb{R}$ be a sequence of absolutely continuous functions such that $f_n(0)=0$ for all n. Suppose that $\{f'_n\}$ is a Cauchy sequence in $L^1([0,1])$. Show that there is an absolutely continuous function f such that $f_n\to f$ uniformly on [0,1].