PhD Qualifying Exam in Numerical Analysis

Spring 2023

1. Consider the iteration method

$$Ax^{(k+1)} = Bx^{(k)} + f$$

where $x^{(k)}$, f are vectors in \mathbb{R}^n and A, B are square matrices in $\mathbb{R}^{n \times n}$. Assume that A is nonsingular and $q = ||A^{-1}|| ||B|| < 1$ where $||\cdot||$ is the matrix norm induced by the Euclidean norm in \mathbb{R}^n . Please answer the following questions:

- (a) (7 pts) Show that the linear system Ax = Bx + f has a unique solution.
- (b) (7 pts) Show that the iterative solution $x^{(k)}$ converges to the solution x of the linear system in part (a) for any initial guess $x^{(0)}$.
- (c) (7 pts) Continued in part (b), derive a error estimate $||x x^{(k)}||_2$ in terms of k, q and $||x^{(1)} x^{(0)}||_2$.
- 2. Given a function $f(x) = \frac{1}{x^2+1}$ defined on the interval [-5,5]. Let $f_n(x)$ be a function that interpolates f(x) by using Lagrange interpolation on equally spaced nodes $\Delta x = \frac{10}{n}$ where n+1 is the number of nodes. Please answer the following questions:
 - (a) (7 pts) Show that for any $x \in [-5, 5]$, we have

$$f(x) - f_n(x) = w_n(x) f[x_0^{(n)}, \dots, x_n^{(n)}, x]$$

where $x_j^{(n)} = -5 + j \triangle x, j = 0, \dots, n, w_n(x) = \prod_{j=0}^n (x - x_j^{(n)})$ and $f[x_0^{(n)}, \dots, x_n^{(n)}, x]$ is the (n+1)st Newton divided difference of f.

(b) (7 pts) Show that

$$f[x_0^{(n)}, \cdots, x_n^{(n)}, x] = \frac{1}{iw_n(i)} \frac{r_n}{x^2 + 1},$$

where i is the imaginary number and $r_n = x$ if n is even; $r_n = i$ if n is odd.

- (c) (7 pts) Show that f_n does not converges to f at x = 4 as n goes to infinity.
- 3. Given n+1 distinct points $a=x_0 < x_1 < \cdots < x_n = b$ on the interval [a,b](a < b) and $f \in C^2([a,b])$, please answer the following questions:
 - (a) (7 pts) Show that there exists a unique piecewise-polynomial S(x) with degree 3 such that $S(x) = S_j(x)$ for $x \in [x_j, x_{j+1}], j = 0, \dots, n-1$, satisfying
 - (1) $S_j(x_j) = f(x_j)$ and $S_j(x_{j+1}) = f(x_{j+1})$ for $j = 0, \dots, n-1$;
 - (2) $S'_{j+1}(x_{j+1}) = S'_{j}(x_{j+1})$ for $j = 0, \dots, n-2$;
 - (3) $S''_{j+1}(x_{j+1}) = S''_{j}(x_{j+1})$ for $j = 0, \dots, n-2$;
 - (4) $S''(x_0) = S''(x_n) = 0.$

(b) (7 pts) Show that S(x) in part (a) satisfies

$$\int_{a}^{b} (S''(x))^{2} dx \le \int_{a}^{b} (f''(x))^{2} dx$$

where the equality holds if and only if f(x) = S(x) on [a, b].

4. (9 pts) Given the ordinary differential equation $\frac{dy}{dt} = f(t, y(t))$ with the initial condition $y(0) = y_0$. Consider the family of linear multistep methods

$$y_{n+1} = \alpha y_n + \frac{h}{2}(2(1-\alpha)f_{n+1} + 3\alpha f_n - \alpha f_{n-1}),$$

where h is the time step and α is a real parameter. Analyze consistency and order of the methods as functions of α , determining the values α^* for which the resulting method has maximal order.

5. Consider the two-point boundary value problem

$$(P1) \begin{cases} -u''(x) + u(x) = f(x), & x \in (0,1), \\ u(0) = u(1) = 0. \end{cases}$$

We can rewrite problem (P1) as the following weak formulation:

$$(P2)$$
: Find $u \in V$ satisfying $a(u, v) = (f, v)$, for all $v \in V$,

where the functional space $V = H_0^1(0,1), (f,v) = \int_0^1 fv \, dx$ denotes the scalar product of $L^2(0,1)$ and the bilinear form $a(u,v): V \times V \to \mathbb{R}$ is defined by

$$a(u,v) = \int_0^1 u'v' dx + \int_0^1 uv dx.$$

We use the Galerkin method to solve (P2) by introducing V_h as a finite dimensional vector subspace of V and approximate (P2) by the problem

(P3): Find
$$u_h \in V_h$$
 satisfying $a(u_h, v_h) = (f, v_h)$, for all $v_h \in V_h$,

Please answer the following questions:

- (a) (7 pts) If $f \in C^0([0,1])$, show that $||u||_{\infty} \le \frac{1}{2} \frac{e}{e-e^{-1}} ||f||_{\infty}$.
- (b) (7 pts) If u and u_h are the solutions of (P2) and (P3) respectively and $f \in L^2(0,1)$, show that

$$|u-u_h|_{H^1(0,1)} \le c \min_{w_h \in V_h} |u-w_h|_{H^1(0,1)},$$

where c is a positive constant independent of h and we endow the space $H_0^1(0,1)$ with the following norm

$$|v|_{H^1(0,1)} = (\int_0^1 (v'(x))^2 dx)^{1/2}.$$

6. Assume that u = u(x,t) satisfies the heat equation

$$(P4): u_t - \nu u_{xx} = f, \quad (x,t) \in (0,1) \times (0,\infty),$$

subject to the boundary condition

$$u(0,t) = u(1,t) = 0, \quad t > 0,$$

and the initial value condition

$$u(x,0) = u_0(x), x \in [0,1],$$

where $\nu > 0$ is the diffusive constant and f(x,t) is the forcing term. For the solution u(x,t) of (P4), we define the energy E(t) on the time interval as

$$E(t) = \int_0^1 u^2(x, t) dx.$$

Now, consider the central difference for the spatial variable and θ method for the temporal variable and obtain the following numerical scheme

$$(P5): \begin{cases} \frac{u_i^{k+1} - u_i^k}{\Delta t} - \nu \theta \frac{u_{i+1}^{k+1} - 2u_i^{k+1} + u_{i-1}^{k+1}}{(\Delta x)^2} - \nu (1 - \theta) \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{(\Delta x)^2} \\ = \theta f_i^{k+1} + (1 - \theta) f_i^k, i = 1, \cdots, n-1; k = 0, 1, \cdots; \\ u_0^k = u_n^k = 0, k = 0, 1, \cdots; \\ u_i^0 = u_0(x_i), i = 1, \cdots, n-1, \end{cases}$$

where $\Delta x = \frac{1}{n}$, $\Delta t > 0$ and $\theta > 0$. Here, u_i^k is the approximation of u at $(x,t) = (i\Delta x, k\Delta t)$ and $f_i^k = f(i\Delta x, k\Delta t)$. We define $U^k = (u_1^k \quad u_2^k \quad \cdots \quad u_{n-1}^k)^T$ and rewrite (P5) in terms of the matrix form as follows:

$$(P6): U^{k+1} - \theta \Delta t A U^{k+1} = U^k + (1 - \theta) \Delta t A U^k + \theta \Delta t F^{k+1} + (1 - \theta) \Delta t F^k,$$

where A is some $(n-1) \times (n-1)$ matrix and F^k is related to the forcing term f^k . Please answer the following questions:

(a) (7 pts) Show that E(t) satisfies the following inequality for $t \geq 0$,

$$E(t) \le e^{-\gamma t} (E(0)) + \frac{1}{\gamma} \int_0^t e^{\gamma(s-t)} F(s) \, ds,$$

where $\gamma = \frac{\nu}{c_p^2}$, $F(t) = \int_0^1 f^2(x,t) dx$ and c_p is the Poincare constant.

- (b) (7 pts) Show that the problem (P6) is solvable for any given U^k , $\Delta t > 0$ and $\theta > 0$.
- (c) (7 pts) Find all values of θ to determine the numerical scheme (P5) is unconditionally stable.