NYCU Department of Applied Mathematics

Qualifying Examination in Discrete Mathematics

For the Ph.D. Program

February 2023

<u>Note</u>: The proofs and statements must be detailed. When you quote some theorems, please prove them.

- 1. (a) Give the definition of an Eulerian circuit and the definition of an Eulerian graph. (3%)
 - (b) Prove that a finite graph G with no isolated vertices (but possibly with multiple edges) is Eulerian if and only if it is connected and every vertex has even degree. (12%)
- 2. (a) Give the definition of a *Hamiltonian circuit*. (3%)
 - (a) Prove that if a simple graph G on n vertices has all vertices of degree at least n/2, then it has a Hamiltonian circuit. (12%)
- 3. Let K_n denote the complete graph of order n.

A red (respectively, blue) K_3 is a K_3 whose edges are all colored red (respectively, blue).

- (a) Prove that if the edges of K_6 are colored red or blue, then, no matter how edges are colored, there is a red K_3 or there is a blue K_3 . (12%)
- (b) Prove that the outcome stated in (a) may not occur if we replace K_6 with K_5 . (3%)
- 4. Let S be a subset of vertices of a graph, let N(v) be the set of all vertices adjacent to a given vertex v, and let $N(S) = \bigcup_{v \in S} N(v)$. Let G be a bipartite graph with bipartition X, Y.
 - (a) Give the definition of a complete matching from X to Y. (3%)
 - (b) Prove that G has a complete matching from X to Y if and only if $|N(S)| \ge |S|$ for every $S \subseteq X$. (12%)
- 5. (a) Prove the Euler's formula, i.e., for a drawing of a connected planar graph G, n e + f = 2, where n, e, and f are, respectively, the number of vertices, edges, and faces. (8%)
 - (b) Prove that every simple planar graph of order $n \ge 3$ has at most 3n 6 edges. (4%)
 - (c) Prove that K_5 is not planar. (2%)
- 6. A derangement of 1, 2, ..., n is a permutation $i_1 i_2 ... i_n$ of 1, 2, ..., n such that $i_1 \neq 1$, $i_2 \neq 2$, ..., $i_n \neq n$. Denote by D_n the number of derangements of 1, 2, ..., n. List all derangements of 1, 2, 3 and prove that for $n \geq 1$,

$$D_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \right). \tag{13\%}$$

7. Let g_n be the number of different ways to put n blocks, each of size 1×2 , over a $2 \times n$ array, such that each block is put either vertically or horizontally, and, no two blocks overlap. For example, the followings are two ways to put blocks in a 2×5 array.

- (a) Find a recurrence relation that g_n satisfies and verify your answer. (6%)
- (b) Solve your recurrence relation and give an explicit formula for g_n . (7%)