National Yang Ming Chiao Tung University Department of Applied Mathematics

Real Analysis Ph.D. Qualifying Exam, Fall 2022

There are 8 question sets of total 100 points.

Answer questions as carefully and completely as possible.

Do not make formal arguments without mathematical justification.

If you use a major theorem, mention it by name and check its hypotheses.

- 1. Let $\{f_n\}_n$ be a sequence of functions in $L^5([0,1])$ with respect to the Lebesgue measure. Determine if the following statements are true or false and justify your answers.
 - (a) (5 %) If f_n converges pointwise almost everywhere to f, then there is a subsequence of $\{f_n\}_n$ converges f in L^5 .
 - (b) (5 %) If f_n converges in measure to f, then $\{f_n\}_n$ converges f in L^5 .
 - (c) (5 %) If f_n converges to f in L^5 , then f_n converges to f in measure.
 - (d) (5 %) If f_n converges to f in L^5 , then there is a subsequence of $\{f_n\}_n$ converges pointwise almost everywhere to f.
- 2. (10 %) Let $\mathcal{F} = \left\{ f : [0, \infty) \longrightarrow [0, \infty] \mid \int_{[0, \infty)} f^5(x) \, dx \le 1 \right\}$. Compute $\sup_{f \in \mathcal{F}} \int_{[0, \infty)} f^4(x) e^{-x} \, dx$ explicitly.
- 3. Suppose $f:[0,1] \longrightarrow \mathbb{R}$ is a measurable function with respect to the Lebesgue measure on [0,1] satisfying

$$\sum_{n=1}^{\infty} \left(\int_{[0,1]} |f(x)|^n \, dx \right) < \infty.$$

- (a) (5 %) Show that |f(x)| < 1 almost everywhere with respect to the Lebesgue measure on [0, 1].
- (b) (5 %) Show that the function $g(x) = \frac{1}{1 f(x)}$ is Lebesgue integrable with respect to the Lebesgue measure over [0, 1].
- 4. (10 %) If $f \in L^{\infty}(\mathbb{R})$ is a periodic function with period 1 and if

$$\int_{\mathbb{R}} f(x/\epsilon)\zeta(x)dx \longrightarrow \int_{\mathbb{R}} g(x)\zeta(x)dx \quad \text{as } \epsilon \to 0,$$

for any $\zeta \in \mathscr{C}_0^1(\mathbb{R})$ = the set of functions with continuous derivatives and compact support, what is the function g? Why?

5. (10 %) Let B_r be a disk in \mathbb{R}^2 with radius r and centered at the origin, $f \in L^2(B_2)$, and

$$K = \begin{cases} 1 & \text{in } B_1, \\ 2 & \text{in } B_2 \setminus B_1. \end{cases}$$

If $U, \nabla U \in L^2(B_2)$ satisfies

$$\int_{B_2} K \nabla U \nabla \zeta \ dx = \int_{B_2} f \zeta \ dx \qquad \text{for any } \zeta \in \mathscr{C}^1_0(B_2),$$

in which region the Hessian $\nabla^2 U \in L^2$? Why?

- 6. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by f(x,y) = |x| + |y| for any $(x,y) \in \mathbb{R}^2$. Define a Borel measure μ on \mathbb{R} by $\mu(B) = \mathcal{L}^2(f^{-1}(B))$ for any Borel set $B \subset \mathbb{R}$, where \mathcal{L}^2 is the Lebesgue measure on \mathbb{R}^2 .
 - (a) (5 %) Show that μ is absolutely continuous with respect to the Lebesgue measure \mathcal{L}^1 on \mathbb{R} .
 - (b) (5 %) Find the Radon-Nikodym derivative $\frac{d\mu}{d\mathcal{L}^1}$.
- 7. (15 %) If (X, \mathfrak{B}, μ) is a measurable space and $f \in L^p(X, \mu)$ for some $1 \leq p < \infty$, is $\lim_{p \to \infty} ||f||_{L^p(X, \mu)} = ||f||_{L^\infty(X, \mu)}$ true? Why?
- 8. Let (X, \mathfrak{B}, μ) be a measurable space and $1 \leq p < q \leq \infty$.
 - (a) (10 %) Under what conditions $L^q(X,\mu) \subset L^p(X,\mu)$ is true? Why?
 - (b) (5 %) Under what conditions $L^p(X,\mu) \subset L^q(X,\mu)$ is true? Why?