National Yang Ming Chiao Tung University Department of Applied Mathematics

Real Analysis Ph.D. Qualifying Exam, Spring 2021

There are 6 question sets of total 100 points.

Answer questions as carefully and completely as possible.

Do not make formal arguments without mathematical justification.

If you use a major theorem, mention it by name and check its hypotheses.

1. (a) (5 %) Suppose that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function such that f'(x) exists and $|f'(x)| \le 1$ for almost all $x \in \mathbb{R}$. Is it true that

$$f(b) - f(a) = \int_{[a,b]} f'(x) dx$$
 for every closed intervals $[a,b] \subset \mathbb{R}$?

Justify your answer.

(b) (5%) Suppose that $g: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable at all $x \in \mathbb{R}$, Is such a g necessarily of bounded variation for every closed interval $[a,b] \subset \mathbb{R}$? Justify your answer.

(c) Let
$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x \in (0, \infty); \\ 1, & \text{if } x = 0. \end{cases}$$

i. (5 %) $f \in L^1([0,\infty))$? Justify your answer.

ii. (5 %) Does the improper Riemann integral $\int_0^\infty f(x) dx$ converge? Justify your answer.

2. (10 %) Let $f_k : \mathbb{R} \longrightarrow \mathbb{R}$ be a sequence of Borel measurable functions and let

$$E = \left\{ x \in \mathbb{R} \mid \lim_{k \to \infty} f_k(x) \text{ exists and is finite} \right\}.$$

Is the set E Borel measurable? Justify your answer.

3. (a) Suppose that $f: \mathbb{D} = \{(x,y) \mid x^2 + y^2 \leq 1\} \longrightarrow \mathbb{R}$ is defined by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2}, & \text{if } (x,y) \neq (0,0); \\ 0. & \text{if } (x,y) = (0,0). \end{cases}$$

i. (4%) Compute the iterated integrals of f over \mathbb{D} .

ii. (6 %) Is f Lebesgue integrable over \mathbb{D} ? Justify your answer.

- (b) (5 %) Let $f:[0,1] \longrightarrow \mathbb{R}$ be Lebesgue measurable. Suppose f(x)-f(y) is Lebesgue integrable over the square $[0,1] \times [0,1]$. Is it true that $f \in L^1([0,1])$? Justify your answer.
- 4. (a) (5%) Let $f(x) = x^3$ for $x \in [0,1]$. Extend f periodically to be defined for all $x \in \mathbb{R}$ and still denote the extended function by f. Define $f_k(x) = f(kx)$ for $k \in \mathbb{N}$. Show that the sequence $\{f_k\}_k \in L^1([0,1])$.
 - (b) (5 %) Is it true that there is an $f \in L^1([0,1])$ so that $\int_{[0,1]} f_k(x) \cdot g(x) dx \longrightarrow \int_{[0,1]} f(x) \cdot g(x) dx$ for all $g \in L^{\infty}([0,1])$? Justify your answer.
 - (c) (5 %) Does the sequence $\{f_k\}_k$ converges with respect to L^1 -norm to some $f \in L^1([0,1])$? Justify your answer.
- 5. (20 %) Given $0 < \epsilon < 1$. Construct a dense measurable subset $E \subset [0,1]$ such that the outer measure of E is ϵ .
- 6. (20 %) Let f(x,y), $0 \le x,y \le 1$ satisfy the following conditions: For each x, f(x,y) is an integrable function of y, and $\frac{\partial f(x,y)}{\partial x}$ is a bounded function of (x,y). Show that $\frac{\partial f(x,y)}{\partial x}$ is a measurable function of y for each x and

$$\frac{d}{dx} \int_0^1 f(x, y) \, dy = \int_0^1 \frac{\partial}{\partial x} f(x, y) \, dy.$$