QUALIFY EXAM. PARTIAL DIFFERENTIAL EQUATIONS. SEPTEMBER 2020

- This exam contains 4 problems with a total 100 points. Solve these 4 problems to get full credits.
- 1. (20 points) Let u = u(x, y, t) be a solution of the Cauchy problem

(0.1)
$$\begin{cases} u_t + u(u_x + u_y) = 0, & \text{for } t > 0, \\ u(x, y, 0) = \frac{1}{x^2 + y^2 + 1}. \end{cases}$$

Prove that the Cauchy problem (0.1) has a classical C^1 solution up to the time $T = \min_{(x,y)} \frac{(x^2 + y^2 + 1)^2}{2|x + y|}$. Find T explicitly.

- Hint. Use the characteristic method and the inverse function theorem.
- 2. (a) (15 points) Let $U \in C^2(\mathbb{R}^2)$ be a solution to

$$\partial_s \partial_\lambda U = 0 \text{ in } \mathbb{R}^2.$$

Prove that $U(s, \lambda)$ can be written in the form of

$$U(s,\lambda) = F(s) + G(\lambda), \quad \text{for } (s,\lambda) \in \mathbb{R}^2,$$

where F and G are some functions defined on \mathbb{R} .

(b) (15 points) Use and only use the results from (a) to reduce the well-known d'Alembert's formula for the solution $u=u(t,x)\in C^2(\mathbb{R}^2)$ to the following equation

$$\begin{cases} \partial_t^2 u - \partial_x^2 u = 0 & \text{in } (0, \infty) \times \mathbb{R}, \\ u = g, & \partial_t u = h & \text{on } \{0\} \times \mathbb{R} \end{cases}$$

with $g: \mathbb{R} \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$ to be given.

- Hint. For (a), one may consider the following change of variables:

$$\begin{cases} s = x + t, \\ \lambda = x - t. \end{cases}$$

Define a $C^2(\mathbb{R}^2)$ function by $U(s,\lambda) := u(t,x)$, for all $(t,x) \in \mathbb{R}^2$, then prove that $\partial_t^2 u - \partial_x^2 u = 0$ holds in \mathbb{R}^2 if and only if $\partial_s \partial_\lambda U(s,\lambda) = 0$ holds in \mathbb{R}^2 .

3. (20 points) Take a positive integer $N \geq 3$. Let $B_R(0)$ be a ball centered at 0 with radius R > 0 in \mathbb{R}^N . Given functions $f \in C^{0,\alpha}(\overline{B_R(0)})^1$, and $g \in C(\partial B_R(0))$.

Here $C^{0,\alpha}(\overline{B_R(0)})$ denotes the Hölder continuous space on a compact ball $\overline{B_R(0)}$ of radius R > 0, for some $0 < \alpha < 1$.

Suppose that $u \in C^2(B_R(0)) \cap C(\overline{B_R(0)})$ is a solution of

$$\begin{cases} -\Delta u = f & \text{in } B_R(0), \\ u = g & \text{on } \partial B_R(0). \end{cases}$$

Prove that the following identity holds:

$$u(0) = \frac{1}{|\partial B_R(0)|} \int_{\partial B_R(0)} g(y) \, dS(y) + \frac{1}{N(N-2)|B_1(0)|} \int_{B_R(0)} \left(\frac{1}{|y|^{N-2}} - \frac{1}{R^{N-2}}\right) f(y) \, dy,$$

where |E| is the Lebesgue measure of a measurable set $E \subset \mathbb{R}^N$.

4. (The problem is based on a result due to the work of Brezis-Merle: Uniform estimates and blow-up behavior of solutions of $-\Delta u = V(x)e^u$ in two dimensions.)

Let $B_R(0)$ be a ball centered at 0 with radius R > 0 in \mathbb{R}^2 . Let $f : \overline{B_R(0)} \to \mathbb{R}$ satisfying $f \in C^{0,\alpha}(\overline{B_R(0)})$. Let $u \in C^2(B_R(0)) \cap C(\overline{B_R(0)})$ be the solution of

$$\begin{cases} -\Delta u = f & \text{in } B_R(0), \\ u = 0 & \text{on } \partial B_R(0). \end{cases}$$

Answer the following questions:

(a) (10 points) Define $U: \mathbb{R}^2 \to \mathbb{R}$ by

$$U(x) := \frac{1}{2\pi} \int_{B_R(0)} \log \left(\frac{2R}{|x - y|} \right) |f(y)| \, dy, \quad \text{ for } x \in \mathbb{R}^2.$$

Prove that $|u(x)| \leq U(x)$ for all $x \in \overline{B_R(0)}$.

(b) (10 points) Prove that for any $0 < \lambda < 2$, we have

$$\int_{B_R(0)} \frac{1}{|x-y|^{\lambda}} dx \le \int_{B_R(0)} \frac{1}{|x|^{\lambda}} dx, \quad \text{for any } y \in B_R(0).$$

(c) (10 points) By using the conclusions of (a) and (b), prove that for any $\mu \in (0, 4\pi)$,

$$\int_{B_R(0)} \exp\left(\frac{(4\pi - \mu)|u(x)|}{\|f\|_{L^1(B_R(0))}}\right) dx \le \frac{4\pi^2}{\mu} (2R)^2$$

holds.

- Hint. For (a), use the maximum (or comparison) principle for subharmonic functions. For (c), you may use the Jensen's inequality from Real Analysis: Let $F: \mathbb{R} \to (0,\infty)$ be a convex function, and $w: \overline{B_R(0)} \to [0,\infty)$ be a L^1 -function with $\int_{B_R(0)} w(y) \, dy = 1$. Then one has

$$F\left(\int_{B_R(0)} \varphi(y)w(y)\,dy\right) \le \int_{B_R(0)} w(y)F(\varphi(y))\,dy,$$

for any $\varphi : \overline{B_R(0)} \to [0, \infty)$ with $\int_{B_R(0)} \varphi(y) w(y) dy < \infty$. Try to choose some special F, φ and w to answer (c).