NATIONAL CHIAO TUNG UNIVERSITY

Real Analysis Ph.D. Qualifying Exam, Fall 2019

- 1. Let μ be a measure on X and $\{E_k\}_{k\in\mathbb{N}}$ be a sequence of μ -measurable subset of X. Prove or disprove (by giving a counterexample) the following statements:
 - (a) (10 %) If $\sum_{k=1}^{\infty} \mu(E_k) < \infty$, then for μ -almost all $x \in X$ belongs to at most finitely many E_k 's.
 - (b) (10 %) If $\mu(\{x \in X \mid x \in E_k \text{ for infinitely many } k \in \mathbb{N}\}) = 0$, then $\sum_{k=1}^{\infty} \mu(E_k) < \infty$.
- 2. (15 %) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$. Suppose that both f(x) and xf(x) are integrable with respect to the Lebesgue measure dx. Define

$$g(y) = \int_{\mathbb{R}} f(x) \sin(xy) \, dx.$$

Prove that g is differentiable and

$$g'(y) = \int_{\mathbb{R}} x f(x) \cos(xy) \, dx.$$

- 3. (15 %) Let $f:[0,1] \longrightarrow \mathbb{R}$ so that $f \in L^1([0,1])$ with respect to the Lebesgue measure. Which of the following three functions: $\sqrt{|f|}$, f^2 , or $\arctan f \in L^1([0,1])$? Justify your answers.
- 4. (20 %) Show that $L^p(\mathbb{R}^n)(1 \le p \le \infty)$ is a complete space.
- 5. (15 %) Show that the unit ball $S = \{x \in X | ||x|| \le 1\}$ of a Banach space X is compact if and only if X is of finite dimensional.
- 6. (15%) A Banach space X is said to be uniformly convex if for any $\varepsilon > 0$ there exists a $\delta > 0$ such that for $f, g \in X$, if ||f|| = 1, ||g|| = 1 and $||f + g|| > 2 \delta$ implies that $||f g|| < \varepsilon$. Show that any Hilbert space is uniformly convex.