2019 Ph.D. Qualifying Exam in Partial Differential Equations, September 10, 2019.

National Chiao Tung University

September 10, 2019

Instruction: Please answer all of the following questions. Please justify all the steps in your arguments with clear and rigorous mathematical arguments. In the case when you need to use a specific mathematical theorem to justify your answer, please specify exactly which theorem or theory you are using.

Problem 1(12 points) Let $N \geq 2$ be an integer, consider $u \in C^{\infty}(\mathbb{R}^N)$ be a solution to the Laplace equation on \mathbb{R}^N , so that $\Delta u = 0$ holds on \mathbb{R}^N . Suppose further that u satisfies the following property

 $\int_{\mathbb{R}^N} \left| u(x) \right|^2 \, \mathrm{d}x < \infty.$

Prove that we have u = 0 on \mathbb{R}^N .

Problem 2(6 points) Let Ω be a bounded domain in \mathbb{R}^N , for some integer $N \geq 2$. Consider a scalar-valued function u $C^0(\overline{\Omega}) \cap C^{\infty}(\Omega)$ which satisfies $\Delta u = 0$ on Ω . Prove that there exists some absolute constant $C_0 > 0$, which depends only on N, such that u satisfies the following apriori estimate for any $x \in \Omega$.

 $d_x |\nabla u(x)| + d_x^2 |\nabla^2 u(x)| \le C_0 ||u||_{L^{\infty}(\Omega)},$

where $d_x = dist(x, \partial\Omega)$, which is the distance of x from the boundary of Ω , and that $|\nabla^2 u| = \max\{|\partial_i \partial_j u| : 1 \le i, j \le N\}$.

Problem 3(12 points) Let Ω be a bounded domain with smooth boundary in \mathbb{R}^N , for some integer $N \geq 2$. Consider a scalar-valued function $u \in C^2(\overline{\Omega})$ which satisfies $\Delta u = u^3$ on Ω . Suppose further that $|\nabla u(x)| \leq 1$ holds for all $x \in \partial \Omega$. Prove that $|\nabla u(x)| \leq 1$ holds for all $x \in \Omega$.

Problem 4 Let Ω be a bounded domain with a C^1 -boundary $\partial\Omega$ in \mathbb{R}^N , for some integer $N\geq 2$. Let T>0 be a given positive quantity. Consider now a scalar-valued function $u:[0,T]\times\overline{\Omega}\to\mathbb{R}$, which is twice continuously differentiable spatially on $[0,T]\times\overline{\Omega}$, as well as one time continuously differentiable in the temporal direction on $[0,T]\times\overline{\Omega}$. In order words, we suppose that $\nabla^2 u\in C^0([0,T]\times\overline{\Omega})$ and that $\partial_t u\in C^0([0,T]\times\overline{\Omega})$. Suppose further that for some prescribed continuous function $f\in C^0([0,T]\times\overline{\Omega})$, u is a solution to the following equation on $[0,T]\times\overline{\Omega}$

$$\partial_t u - \Delta u = f. \tag{0.1}$$

Assume in addition that u(t,x) = 0 holds for all $(t,x) \in [0,T] \times \partial \Omega$.

(Part a) (10 points) Under all the above hypothesis, use integration by parts technique to prove that the following estimate holds for any $\mu \in (0, T]$, where $C_0 > 0$ is some absolute constant which depends only on N

$$\int_{0}^{\mu} \int_{\Omega} |\nabla u(t,x)|^{2} + |u(t,x)|^{2} dx dt + \int_{\Omega} |u(\mu,x)|^{2} dx
\leq C_{0} \left\{ (1+t_{0}) \int_{\Omega} |u(0,x)|^{2} dx + (1+t_{0}^{2}) \int_{0}^{\mu} \int_{\Omega} |f(t,x)|^{2} dx dt \right\}.$$
(0.2)

(Part b) (5 points) For a given $f \in C^0([0,T] \times \overline{\Omega})$ and with respect to a prescribed initial profile $u(0,\cdot) = u_0 \in C^2(\overline{\Omega})$, prove that there is at most one solution u to equation (0.1) on $[0,T] \times \overline{\Omega}$, with $\nabla^2 u \in C^0([0,T] \times \overline{\Omega})$ and $\partial_t u \in C^0([0,T] \times \overline{\Omega})$, which at the same time satisfies the boundary condition $u|_{[0,T] \times \partial \Omega} = 0$.

Problem 5 In this problem, we will look at the space-time $\{(t,x):t\in\mathbb{R},x\in\mathbb{R}\}$, with t stands for the time-variable, and x stands for the spatial variable. Consider a parabolic space-time region Ω , which is defined as follows

$$\Omega = \{(t, x) : |x| < 2, x^2 - 4 < t < 0\}.$$

Note that $\partial\Omega$ consists of two parts, namely Γ and L which are defined as follows

$$\Gamma = \left\{ (x^2 - 4, x) : |x| \le 2 \right\}$$

$$L = \{ (0, x) : |x| \le 2 \},$$

so that $\partial\Omega = \Gamma \cup L$. Under this setting, we consider now a scalar-valued non-constant function $u \in C^0(\overline{\Omega})$, with $\partial_x^2 u$, $\partial_t u \in C^0(\Omega \cup L)$, which is a solution to the following parabolic-type equation on $\Omega \cup L$

$$\partial_t u - \partial_x^2 u + \alpha u = f, (0.3)$$

where the functions $\alpha, f \in C^0(\overline{\Omega})$ are prescribed. Under the above setting and hypothesis, answer the following two questions.

(Part a) (4 points) If it happens that $\alpha(t,x) > 0$ holds for all $(t,x) \in \overline{\Omega}$, and that $f(t,x) \geq 0$ holds for all $(t,x) \in \overline{\Omega}$, prove that the *strict* negative minimum of u (provided that exists) must take place on Γ .

(part b) (6 points) In the case when $\alpha > 0$ on $\overline{\Omega}$ and $f \leq 0$ on $\overline{\Omega}$, can you draw a conclusion which is analog to that in the previous part. Please also prove your answer.

Problem 6 (15 points) Let $0 < T \le +\infty$. Consider a scalar-valued function $u \in C^1([0,T) \times \mathbb{R})$ which satisfies the following first order equation on $[0,T) \times \mathbb{R}$

$$\partial_t u(t,x) + \partial_x \{ f(u(t,x)) \} = 0, \tag{0.4}$$

where $f \in C^1([0,T) \times \mathbb{R})$ is prescribed. Suppose that there are $x_1, x_2 \in \mathbb{R}$ with $x_1 < x_2$ such that $f'(u(0,x_1)) > f'(u(0,x_2)) > 0$. Is it possible that $T = +\infty$. If your answer is affirmative, please prove your answer. If your answer is negative, please prove your answer.

Problem 7 Consider the unit ball $B_O(1) = \{x \in \mathbb{R}^3 : |x| < 1\}$ in \mathbb{R}^3 . Let $\rho : \overline{B_O(1)} \to (0, \infty)$ be a positive-valued continuous function as defined on the closed ball $\overline{B_O(1)}$. Consider the function $F : \mathbb{R}^3 \to \mathbb{R}$ which is defined as follows

$$F(x) = \int_{\{y \in \mathbb{R}^3 : |y| \le 1\}} \frac{\rho(y)}{|x - y|} \, \mathrm{d}y. \tag{0.5}$$

With the above background, please answer the following question

(Part a) (6 points) For the function F as defined in (0.5), prove that F is smooth on $\mathbb{R}^3 - \overline{B_O(1)}$. That is prove that $F \in C^{\infty}(\mathbb{R}^3 - \overline{B_O(1)})$.

(Part b) (4 points) By means of your result as obtained in (Part a), prove that $\Delta F = 0$ holds on $\mathbb{R}^3 - \overline{B_O(1)}$.

(Part c) (8 points) Prove that there exists a constant $C_0 > 0$, which depends only on the density function ρ , such that the following estimate holds for all $x \in \mathbb{R}^3$ with $|x| \geq 2$.

$$0 < F(x) \le \frac{C_0}{|x|}.\tag{0.6}$$

(Part d) (2 points)In the case of $\underline{\rho=1}$ on $\overline{B_O(1)}$, do you agree that F, as defined in (0.5), is indeed radially symmetric on $\mathbb{R}^3 - \overline{B_O(1)}$. Please explain your reason very briefly.

(Part e)(4 points) By means of results and observations as obtained in the previous parts, prove that if $\rho = 1$ holds on $\overline{B_O(1)}$, then, we have the following identity which holds for all $x \in \mathbb{R}^3 - \overline{B_O(1)}$.

$$F(x) = \frac{A_0}{|x|},\tag{0.7}$$

where $A_0 > 0$ is some constant.

(Part f) (6 points) Compute the positive constant $A_0 > 0$ which appears in identity (0.7), and express your answer in terms of $\pi = 3.14159...$ Please prove your answer.