Qualifying Examination: Ordinary Differential Equations February 21, 2019

1. Let $\varphi(t)$ be the solution of

$$\begin{cases} x'(t) = f(t, x(t)) \in C, & t_0 \le t \le b \ (b > t_0) \\ x(t_0) = x_0. \end{cases}$$

Let x(t) be a scalar, differentiable function satisfying

$$\begin{cases} x'(t) \le f(t, x(t)), & t_0 \le t \le b \\ x(t_0) \le x_0. \end{cases}$$

(15 points) Is it true that $x(t) \leq \varphi(t)$ on $[t_0, b]$? Give a proof or a counterexample.

2. Consider

$$x' = Ax = \begin{pmatrix} a & b \\ c & d \end{pmatrix} x,\tag{1}$$

where $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a real, constant, nonsingular matrix. Suppose that the origin is a center of linear system (1) and $x = \varphi(t)$ is a nontrivial (real) solution.

(20 points) Find the equation of $x = \varphi(t)$ and prove that the trajectory of $x = \varphi(t)$ lies on an ellipse on the x_1x_2 -plane. In addition, give a necessary and sufficient condition on matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that the trajectory of $x = \varphi(t)$ lies on a circle on the x_1x_2 -plane. (Justify your answer.)

3. Consider the linear periodic system

$$x' = A(t)x, \quad A(t) = (a_{ij}(t)) \in \mathbb{R}^{n \times n}, \tag{2}$$

where A(t) is continuous on \mathbb{R} and is periodic with period T, i.e., A(t) = A(t+T) for all t. (15 points) (a) If $\Phi(t)$ is a fundamental matrix of (2), prove that there exists $P(t) \in \mathbb{C}^{n \times n}$ which is nonsingular and satisfies P(t) = P(t+T) and there exists $R \in \mathbb{C}^{n \times n}$ such that $\Phi(t) = P(t)e^{tR}$. Moreover, the nonautonomous linear system (2), under the linear change of coordinates x = P(t)y, reduces to the autonomous linear system

$$y' = Ry$$
.

(10 points) (b) Let $\Phi(t)$ be a fundamental matrix of (2). Prove that, for any positive integer m, (2) has a nontrivial mT-periodic solution if and only if $(\Phi^{-1}(0)\Phi(T))^m$ has one as an eigenvalue.

(Please turn this page over and continue with Problems 4 and 5, Page 2.)

4. (5 points) (a) Let γ be a periodic orbit of period T of the autonomous system

$$x' = f(x) \in C^1, \quad f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n.$$
 (3)

Describe briefly what is the Poincaré map P in determining the orbital stability of periodic orbit γ for (3).

(15 points) (b) Consider the nonlinear system

$$\begin{cases} x' = -y + x(1 - x^2 - y^2) \\ y' = x + y(1 - x^2 - y^2). \end{cases}$$
 (4)

- (i) Let the transverse section Σ be the ray $\theta = \theta_0$ through the origin. Find the Poincaré map P for any point on Σ . Find a periodic orbit in the xy-plane.
- (ii) Show that nonlinear system (4) has exactly one periodic orbit in the xy-plane. Find the periodic orbit and its period. Determine the stability of the periodic orbit.
- 5. (8 points) (a) State (i) the Liapunov stability and asymptotic stability theorem and (ii) the Liapunov instability theorem for the IVP

$$x' = f(x), \quad x(0) = x_0, \ x \in D \subset \mathbb{R}^n.$$

(12 points) (b) Discuss the (asymptotic) stability of the origin of the 3-dimensional system

$$\begin{cases} x' = -2y + yz \\ y' = x - xz \\ z' = xy. \end{cases}$$

Hint. Find a suitable Liapunov function V(x, y, z).