中事士班資格孝

Probability, FEB 2011

20 points for each problem

1)(i)Let X_s be Poisson with parameter s > 0. Compute the characteristic function of X_s and show that for $s \to \infty$,

$$\frac{X_s - s}{\sqrt{s}}$$
 converges weakly (in distribution) to a standard normal distribution.

- (ii) X and Y are i.i.d. random variables with mean zero and variance one. Suppose that $\frac{X+Y}{\sqrt{2}}$ and X have the same distribution, show that X and Y must be standard normal. (Hint: use the central limit theorem.)
- 2) Find the following conditional expectations and verify your answers.
- (i) X and Y are exchangeable random variables, i.e. (X,Y) and (Y,X) are identically distributed, what is $E(X\mid X+Y)$?
 - (ii)X and Y are jointly normal random variables with

$$EX = EY = 0$$
, $EX^{2} = EY^{2} = 1$, $EXY = \rho$, what is $E(X \mid Y)$?

3)Let $\{X_n\}$ be identically distributed with $E \mid X_1 \mid < \infty$. Show that for $n \to \infty$,

$$\frac{\max_{k \le n} \mid X_k \mid}{n} \to 0 \text{ almost surely (a.s.). (Hint:} \frac{\mid X_n \mid}{n} \to 0 \text{ a.s.)}$$

Furthermore if $\{X_n\}$ are i.i.d. and $EX_1 \neq 0$, show that

$$\frac{\sum_{k \le n} X_k^2}{(\sum_{k \le n} X_k)^2} \to 0 \text{ a.s.}$$

- 4) Show that a supermartingale $M(t), 0 \le t \le T$, is a martingale if EM(T) = EM(0).
- 5)Let $X_0, X_1, \dots, X_n, \dots$ be a stochastic process with a countable state space E. Show that the Markovian property of the process is equivalent to the following property: for any

$$r \ge 1$$
, $l_1 < l_2 \cdots < l_r < m < n$, and $i_1, \cdots, i_r, j, k \in E$, we have
$$P\{X_{l_1} = i_1, \cdots, X_{l_r} = i_r, X_n = k \mid X_m = j\}$$
$$= P\{X_{l_1} = i_1, \cdots, X_{l_r} = i_r \mid X_m = j\}P\{X_n = k \mid X_m = j\}.$$