博士班資格差

代数

Qualifying Exam

FEBRUARY 24, 2011

Instructions. You need to show all your work in order to get full credit. When using a theorem, you must state it clearly and correctly.

- 1. (10 points) Let p be an odd prime and $R = \mathbb{Z}/2p\mathbb{Z}$. Consider $f(x) = x^p x$. What are the roots of f in R?
- **2.** (10 points) Let A and B be $n \times n$ matrix over \mathbb{R} . Suppose that B is invertible and $A^tBA = B$. Prove that λ is an eigenvalue of A if and only if $\frac{1}{\lambda}$ is an eigenvalue of A.
- **3.** (10 points) Let A and B be two $n \times n$ complex matrices. Suppose that A and B have the same characteristic polynomials. Do A and B have the same eigenvalues? If yes, prove it. If not, find a counterexample.
- **4.** (15 points) Let ξ be a primitive 8-th root of unity and consider the field extension $\mathbb{Q} \subseteq \mathbb{Q}(\xi)$.
- (i) Find the Galois group of this extension.
- (ii) How many intermediate fields are there between \mathbb{Q} and $\mathbb{Q}(\xi)$.
- 5. (10 points) Prove that $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{R}) = \{e\}.$
- **6.** (10 points) Let R be a commutative Noetherian ring with identity. Let x be an indeterminate. Prove that the ring of polynomials R[x] is Noetherian.
- 7. (15 points) Let G be a group of order 12 such that G contains no element of order 6.
- (i) Prove that its 2-sylow subgroup is a normal subgroup of G.
- (ii) Prove that its 2-sylow subgroup is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- 8. (20 points) Let \mathbb{F}_q denote the finite field of $q = p^m$ elements, where p is a prime. Let $GL_n(\mathbb{F}_q)$ denote the group of invertible $n \times n$ matrices with coefficients in \mathbb{F}_q .
 - (i) What is the order of $GL_n(\mathbb{F}_q)$?
- (ii) What is the order of a p-sylow subgroup of $GL_n(\mathbb{F}_q)$? Find such a p-sylow subgroup.
- (iii) A flag in \mathbb{F}_q^n sequence of vector spaces V_i of dimension i of the form

$$0 \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_{n-1} \subsetneq \mathbb{F}_q^n$$
.

What is the cardinality of the set of flags?