交通大學應用數學系博士班資格考(2010年9月)

Probability, SEP 2010

20 points for each problem

1)Let $\{X_n\}$ be a sequence of identically distributed random variables with finite expectation. Prove that

$$\lim_{n\to\infty} \frac{1}{n} \mathbb{E}\{\max_{1\leq j\leq n} |X_j|\} = 0.$$

(Hint: For $X \ge 0$, $EX = \int_0^\infty P\{X \ge x\} dx$.)

2) Let $\{X_n\}$ be *i.i.d.* random variables with $E|X_1| < \infty$ and $S_n = \sum_{i=1}^n X_i$. By the strong law of large numbers S_n/n converges a.s. to EX_1 . Prove that in fact S_n/n is uniformly integrable and converges to EX_1 in L^1 .

3)Let X(t), $t \ge 0$, be such that for any bounded stopping time τ , $X(\tau)$ is integrable and $EX(\tau) = EX(0)$. Prove that X(t), $t \ge 0$ is a martingale.

4) Interpret and prove probabilistically the trigonometric identity

$$\frac{\sin t}{t} = \prod_{1}^{\infty} \cos \frac{t}{2^n}.$$

(Hint: Use characteristic function.)

5)Let $X_0, X_1, \ldots, X_t, \ldots$ be a Markov chain generated by an irreducible transition matrix $P = \{p_{i,j}\}$ with the stationary (invariant) distribution π in a finite state space $\{1, 2, \cdots, N\}$. Define iteratively

$$\tau_0 = \min_{s \ge 0} \{ s | X_s \ne 1 \}$$
 and $\tau_{t+1} = \min_{s > \tau_t} \{ s | X_s \ne 1 \}.$

Define $\{Y_t\}$ as

$$Y_t = X_{\tau_t}$$
.

Show that $\{Y_t\}$ is a Markov chain on the state space $\{2, 3, \dots, N\}$ with the transition matrix $Q = \{q_{i,j}\},$

$$q_{i,j} = p_{i,j} + \frac{p_{i,1} \cdot p_{1,j}}{1 - p_{1,1}}, \qquad 2 \le i \le N,$$

and the stationary (invariant) distribution μ ,

$$\mu_i = \frac{\pi_i}{1 - \pi_1}, \qquad 2 \le i \le N.$$