交通大學應用數學系博士班資格考(2010年9月)

PhD Qualifying Exam in Numerical Analysis Fall 2010

- 1. (20%) Let φ be a real-valued continuous function defined on [a, b]. Assume that $\varphi([a, b]) \subseteq [a, b]$, φ' exists on (a, b) and $\exists \ 0 < k < 1$ such that $|\varphi'(x)| \le k$ for all $x \in (a, b)$. Consider the fixed point iterations given by $x_{n+1} = \varphi(x_n)$ for $n \ge 0$.
 - (a) Show that $\{x_n\}$ converges to the unique fixed point p of φ for any $x_0 \in [a, b]$.
 - (b) Assume that $\varphi^{(r)}$ is continuous and $\varphi^{(k)}(p) = 0$ for $1 \le k < r$ but $\varphi^{(r)}(p) \ne 0$. Show that the fixed point iteration method converges with order r.
 - (c) Let $\varphi(x) := x \frac{f(x)}{f'(x)}$ for some smooth function f. Assume that f(p) = 0 and $f'(p) \neq 0$. Show that under suitable assumptions, the order of convergence of Newton's method for solving f(x) = 0 is two.
- 2. (20%) Let f be a real-valued function defined on [a, b]. Assume that $f \in C^2[a, b]$.
 - (a) Please use the Lagrange interpolation to derive the trapezoidal formula with an error term for $\int_a^b f(x)dx$.
 - (b) Let $a = x_0 < x_1 < \cdots < x_n = b$ be a uniform partition of [a, b] with mesh size h = (b a)/n. Prove that for such uniform partition the error term for the composite trapezoidal formula is

$$\int_{a}^{b} f(x)dx - \frac{h}{2} \left(f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right) = -\frac{1}{12} (b-a)h^2 f''(\xi), \quad \text{for some } \xi \in (a,b).$$

3. (15%) Let f be sufficiently smooth and satisfy the Lipschitz condition such that there exists a unique solution x(t) for $t_0 \le t \le t_0 + T$ of the following initial value problem:

(IVP)
$$\begin{cases} x'(t) = f(t, x(t)) & \text{for } t_0 < t < t_0 + T, \\ x(t_0) = x_0 \in \mathbb{R}. \end{cases}$$

- (a) Derive the second-order Taylor-series method for the numerical approximation of the IVP.
- (b) Derive the Heun method which is a second-order Runge-Kutta method for the numerical approximation of the IVP in the following form:

$$x(t+h) = x(t) + \frac{h}{2}f(t,x) + \frac{h}{2}f(t+h,x+hf(t,x)) + O(h^3).$$

- 4. (15%) Consider the linear system Ax = b, where $A \in \mathbb{R}^{n \times n}$ is a given nonsingular matrix and $b \in \mathbb{R}^n$ is a given vector.
 - (a) Describe the basic concept of linear iterative method by using the so-called preconditioning matrix (or splitting matrix) P such that A = P N, where P and N are two suitable matrices and P is nonsingular.
 - (b) What are the preconditioning matrices for the Jacobi method and the Gauss-Seidel method?
 - (c) Prove that if $||I P^{-1}A|| < 1$ for some subordinate matrix norm, then the sequence generated by the linear iterative method in part (a) converges to the solution of Ax = b for any initial vector $x^{(0)}$.

5. (15%) Consider the following two-point boundary value problem:

$$(\mathrm{BVP}) \quad \left\{ \begin{array}{ll} -\varepsilon u''(x) + \beta u'(x) = f(x) & \text{for} \quad 0 < x < 1, \\ u(0) = 0 \quad \text{and} \quad u(1) = 0, \end{array} \right.$$

where ε and β are two positive constants and f is a given smooth function. Let $0 = x_0 < x_1 < \cdots < x_{n-1} < x_n = 1$ be a uniform partition of [0, 1] with mesh size h > 0.

- (a) Derive the second-order central difference method for the BVP.
- (b) Derive the finite element method using piecewise linear elements for the BVP.
- (c) Please use the "mean-value theorem for integrals" to explain that the above-mentioned methods are essentially the same method for the BVP.
- 6. (15%) Consider the following initial-boundary value problem of the 1-D heat equation:

(IBVP)
$$\begin{cases} u_t - u_{xx} = 0, & t > 0, \ 0 < x < 1, \\ u(x,0) = u_0(x), & 0 \le x \le 1, \\ u(0,t) = u(1,t) = 0, & t > 0. \end{cases}$$

- (a) Find an explicit finite difference method to solve the IBVP and discuss the stability properties of the method.
- (b) Construct an implicit finite difference method to improve the stability of the explicit method developed in part (a).

Hint: the eigenvalues of the $(n-1)\times (n-1)$ tridiagonal matrix $2I-U-U^{\top}$ are given by $\mu_i=4\sin^2\left(\frac{i\pi}{2n}\right)$ for $i=1,2,\cdots,n-1$, where I is the $(n-1)\times (n-1)$ identity matrix and U is given by

and all unspecified entries are 0.