交通大學應用數學系博士班資格考(2010年9月)

Differential Equations Qualifying Exam.

September, 2010

1. (20 pts) Consider the IVP (initial value problem)

$$\begin{cases} u'' = e^u & \text{for } 0 < t < T_0, \\ u(0) = u'(0) = 1, \end{cases}$$

where u=u(t) is a real-valued function and T_0 is a positive constant. Must the solution u blowup at finite time i.e. there exists $t_0>0$ such that $\lim_{t\to t_0-}u(t)=\infty$? Prove or disprove your answer.

2. (20 pts) Let (v, w) = (v(t), w(t)) be the positive (i.e. v(t), w(t) > 0 for t > 0) solution of the IVP

$$\begin{cases} v'' = w^2 v & \text{for } t > 0, \\ w'' = v^2 w & \text{for } t > 0, \end{cases}$$
$$v(0) = w(0) = 1,$$
$$v'(0) = -w'(0) = a,$$

where a is a positive constant.

- (i) Must $\lim_{t\to\infty} v(t) w(t) = 0$? (10 pts)
- (ii) Can there exist b > 0 such that v(b) = w(b)? (10 pts)

Prove or disprove your answers.

- # 3. (20 pts) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a nonzero smooth function such that $x \cdot f(x) \leq 0$ for $x \in \mathbb{R}^2$. Let $\phi = \phi(t) \in \mathbb{R}^2$ be the solution of ordinary differential equation $\phi' = f(\phi)$ for t > 0 with initial data $\phi(0) = \phi_0 \in \mathbb{R}^2$.
 - (i) Must $\sup_{t>0} \|\phi(t)\| < \infty$? Here $\|\cdot\|$ is the standard two norm of \mathbb{R}^2 . (10 pts)
 - (iii) Suppose f(0) = 0. Must the equilibrium $\phi \equiv 0$ be stable? (10 pts)

Prove or disprove all your answers.

4. (20 pts) Consider the linear system of ordinary differential equations as follows:

$$\begin{cases} \dot{x} = A x & \text{for } t > 0, \\ x(0) = e, \end{cases}$$

where the solution $x=x(t)\in\mathbb{R}^n,\ e\in\mathbb{R}^n$ and $A=(a_{ij})$ is a $n\times n$ matrix satisfying

$$a_{ij} = \frac{i}{j}$$
 for $i, j \in \{1, \dots, n\}$.

(i) Can you find a nonzero vector $e \in \mathbb{R}^n$ such that the solution satisfies

$$\lim_{t \to \infty} ||x(t)|| = 0?$$

(10 pts)

(ii) Can you find a nonzero vector $e \in \mathbb{R}^n$ such that the solution is periodic? (10 pts)

Here $\|\cdot\|$ is the standard two norm of \mathbb{R}^n . Prove or disprove all your answers.

5. (20 pts) Consider the linear system of ordinary differential equations with time-dependent coefficients as follows:

$$\begin{cases} &\dot{x}=B(t)\,x\quad \text{ for }\,t>0\,,\\ &x(0)=e\,,\end{cases}$$

where the solution $x=x(t)\in\mathbb{R}^n$, $e\in\mathbb{R}^n$ and $B:\mathbb{R}\to\mathbb{R}^n$ is a smooth and periodic function with the period T>0. Must the solution x also be periodic with the period T>0? Prove or disprove your answer.