
Di¤erential Equations Qualifying Exam, Feb. 2010

This exam contains 9 problems with a total of 100 points. The �rst 4 problems are related to
ODE and the second 5 problems are related to PDE. Give your arguments as clear as possible.

1. (20 points) Given f : R! R continuous so that

f (0) = 0; f (x) 6= 0 for x 6= 0: (1)

Consider the IVP (initial value problem)8<:
dx

dt
(t) = f (x (t))

x (0) = 0:

(2)

Note that the equation is separable and x (t) � 0 is a solution to the initial value problem.
Do the following problems.

(a). (5 points) Show that if x (t) is a solution to the IVP on the interval [0; a] and x (a) = 0;
then x (t) = 0 for all 0 � t � a:

(b). (10 points) Show that the IVP has a unique solution (i.e., the only solution is x (t) � 0)
if and only if the improper integralsZ 0

�"

1

f (x)
dx and

Z "

0

1

f (x)
dx (3)

both diverge for some " > 0:

(c). (5 points) Assume that f (x) > 0 on (0;1) and
R1
0

1
f(x)

dx exists. Show that the IVP has
a nonzero solution x (t) whose maximal time interval of existence on the part t > 0 is
a �nite interval [0; T ) with limt!T x (t) = 1; where T is given by T =

R1
0

1
f(x)

dx:

Moreover, we have x (t) > 0 on (0; T ) :

Solution:

(a). Assume x (t) is not identically zero on [0; a] : Then there exists some t0 2 (0; a) such that
x (t0) > 0 (we may assume so) and some interval (�; �) � (0; a) with x (t) > 0 on (�; �) ; x (�) =
x (�) = 0: Now we have

� � � =

Z �

�

1dt =

Z �

�

x0 (t)

f (x (t))
dt =

Z x(�)

x(�)

1

f (x)
dx = 0

which is a contradiction. Hence x (t) must be identically zero on [0; a].

(b). (=)) Assume the solution is unique (hence the only solution is x (t) � 0) and
R "
0

1
f(x)

dx

converges. We shall derive a contradiction (if the other one
R 0
�"

1
f(x)

dx converges, the proof is
similar). De�ne the function

F (x) =

Z x

0

1

f (s)
ds; F 0 (x) =

1

f (x)
6= 0; x 2 (0; ") :

Since the improper integral converges, F (x) is continuous on [0; "] with F (0) = 0: Without loss of
generality we may assume that F 0 (x) > 0 on (0; ") with F 0 (0+) = +1. For each t 2 [0; F (")] ;
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there is a unique x (t) 2 [0; "] such that F (x (t)) = t: By the inverse function theorem, such
x (t) is di¤erentiable on t 2 (0; ") with

x0 (t) =
1

F 0 (x (t))
= f (x (t)) ; x (0) = 0; x (t) > 0 on (0; ") :

This gives a contradiction.
((=) On the other hand, assume that both integrals in (3) diverge but the solution is not

unique. We shall derive a contradiction. Now we may assume there exists some solution x (t) to the
IVP with x (0) = 0; x (t) > 0 on (0; a] for some a > 0: Hence

a =

Z a

0

x0 (t)

f (x (t))
dt =

Z x(a)

0

1

f (x)
dx (this is divergent)

and we get a contradiction.

(c). Let F (x) =
R x
0

1
f(s)

ds; x 2 (0;1) : Then F (x) is strictly increasing on [0;1) with F (0) =
0; F (1) = T :=

R1
0

1
f(x)

dx (this is a �nite positive number). By the inverse function theorem,
we have Z x(t)

0

1

f (s)
ds = t for all t 2 (0; T ) :

Such x (t) is di¤erentiable on (0; T ) with x0 (t) = 1
f(x(t))

> 0; x (0) = 0; limt!T x (t) = 1; and
x (t) > 0 on (0; T ) : �

2. (10 points) Prove the following general version of Gronwall inequality (it will contain
most of the other familiar Gronwall inequalities as special cases). This general version is
very useful in ODE theory. Let f (t) ; g (t) ;  (t) be three continuous functions on [a; b]
with  (t) � 0 on [a; b] : If

f (t) � g (t) +

Z t

a

 (s) f (s) ds for all t 2 [a; b] (4)

then show that

f (t) � g (t) +

Z t

a

�
g (s) (s) exp

�Z t

s

 (u) du

��
ds for all t 2 [a; b] : (5)

In particular, when g (t) = C is a constant, show that the above implies the familiar inequality

f (t) � C exp

�Z t

a

 (u) du

�
for all t 2 [a; b] : (6)

Solution:

By approximation if necessary, we may assume that  (t) > 0 on [a; b] : Let

� (t) =

Z t

a

 (s) f (s) ds; � (a) = 0:

Then �0 (t) =  (t) f (t) and

�0 (t)

 (t)
= f (t) � g (t) + � (t) ; t 2 [a; b] : (7)
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Multiply (7) by  (t) exp
�
�
R t
a
 (u) du

�
to get

�0 (t) exp

�
�
Z t

a

 (u) du

�
� [g (t) + � (t)] (t) exp

�
�
Z t

a

 (u) du

�
which implies

d

dt

�
� (t) exp

�
�
Z t

a

 (u) du

��
� g (t) (t) exp

�
�
Z t

a

 (u) du

�
; t 2 [a; b] : (8)

Integrate both sides of (8) on [a; t] to get (note that � (a) = 0)

� (t) exp

�
�
Z t

a

 (u) du

�
�
Z t

a

�
g (s) (s) exp

�
�
Z s

a

 (u) du

��
ds

and so

� (t) �
�
exp

�Z t

a

 (u) du

��
�
�Z t

a

�
g (s) (s) exp

�
�
Z s

a

 (u) du

��
ds

�
:

The above can be written as

� (t) �
Z t

a

�
g (s) (s) exp

�Z t

a

 (u) du�
Z s

a

 (u) du

��
ds

=

Z t

a

�
g (s) (s) exp

�Z t

s

 (u) du

��
ds:

By the assumption

f (t) � g (t) + � (t) � g (t) +

Z t

a

�
g (s) (s) exp

�Z t

s

 (u) du

��
ds

the proof of (5) is done.
Next, when g (t) = C is a constant, (5) becomes

f (t) � C + C

Z t

a

�
 (s) exp

�Z t

s

 (u) du

��
ds = C � C

Z t

a

d

ds

�
exp

�Z t

s

 (u) du

��
ds

= C � C

�
1� exp

�Z t

a

 (u) du

��
= C exp

�Z t

a

 (u) du

�
:

The proof is done. �

3. (10 points) Let f (x) be a smooth vector �eld on Rn such that it generates a smooth dynamical
system 't (x) on Rn (i.e., the map Rn � (�1;1)! Rn given by (t;x)! 't (x) is smooth).
Let D � Rn be a measurable set and let

Dt = f't (x) : x 2 Dg � Rn:

Show that for any time t > 0; the volume of Dt is given by

vol (Dt) =

Z
D

exp

�Z t

0

(div f) ('s (x)) ds

�
dx (9)

where div f denotes the divergence of the vector �eld f: PS: In doing this problem, you can
take the well-known "Liouville theorem" for granted.
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Solution:

By change of variables formula for integration, we have

vol (Dt) =

Z
Dt

1dx =

Z
D0

jdet J't (x)j dx (10)

where J't (x) is the Jacobi matrix of the �ow 't : D0 ! Dt (this is a di¤eomorphism). For
�xed x 2 D0 denote the Jacobi matrix J't (x) by J (t) : By variation formula it satis�es the
equation 8<:

dJ

dt
(t) = (Df) ('t (x)) J (t)

J (0) = Id (n� n identity matrix)

and by Liouville theorem we have

det J (t) = exp

�Z t

0

Trace [(Df) ('s (x))] ds

�
where

Trace [(Df) ('s (x))] = (div f) ('s (x)) :

Hence (10) becomes

vol (Dt) =

Z
D0

jdet J't (x)j dx =
Z
D0

exp

�Z t

0

Trace [(Df) ('s (x))] ds

�
dx

=

Z
D

exp

�Z t

0

(div f) ('s (x)) ds

�
dx:

The proof is done. �

4. (15 points)

(a) (5 points) Assume that A is a real n�n constant matrix. Find a necessary and su¢ cient
condition on A so that for any two solutions X(1) (t) ; X(2) (t) 2 Rn to the �rst order
linear system

dX

dt
= AX; X = X (t) 2 Rn; t 2 [0;1) (11)

their inner product


X(1) (t) ; X(2) (t)

�
is independent of time t 2 [0;1):

(b) (10 points) Consider the second order scalar ODE

x00 (t) + x (t) = g (t) ; t 2 (�1;1) ; (12)

where g (t) is a given smooth 2�-periodic function on (�1;1) : In general, a solution
to (12) may not be 2�-periodic even when g is 2�-periodic (for example g (t) = cos t and
x (t) = 1

2
t sin t). Show that if g (t) satis�es the conditionZ 2�

0

g (t) cos tdt =

Z 2�

0

g (t) sin tdt = 0 (13)

then any solution x (t) to (12) on (�1;1) is also 2�-periodic.
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Solution:

(a) : The necessary and su¢ cient condition on A is A+ AT = 0: To see this, compute

d

dt



X(1) (t) ; X(2) (t)

�
=


AX(1) (t) ; X(2) (t)

�
+


X(1) (t) ; AX(2) (t)

�
=

�
A+ AT

�
X(1) (t) ; X(2) (t)

�
:

(14)
It is easy to see that (14) is zero for any two solutions X(1) (t) ; X(2) (t) if and only if A+AT = 0:

(b) : Fix t0 2 (�1;1) and assume x (t0) = x0; x
0 (t0) = x00: From ODE theory (using the

variation of parameter method), the solution satisfying the initial condition is given by the nice
formula

x (t) = x0 cos (t� t0) + x00 sin (t� t0) +

Z t

t0

g (s) sin (t� s) ds; t 2 (�1;1) : (15)

We have

x (t+ 2�)� x (t)

= � cos t �
Z t+2�

t

g (s) sin sds+ sin t �
Z t+2�

t

g (s) cos sds

= � cos t �
Z 2�

0

g (s) sin sds+ sin t �
Z 2�

0

g (s) cos sds

and so if the periodic function g (s) satis�es condition (13), then x (t) is also 2�-periodic on (�1;1).�

5. (5 points) Consider the �rst order quasilinear equation in two variables (x; y) :

a (x; y; u)ux + b (x; y; u)uy = c (x; y; u) ; u = u (x; y) (16)

where the given functions a (x; y; z) ; b (x; y; z) and c (x; y; z) are assumed to be smooth every-
where and assume that we have two smooth integral surfaces (i.e., solution surfaces) repre-
sented by the following two smooth solutions

S1 : z = u (x; y) ; S2 : z = v (x; y) ;

which intersect transversally along a smooth curve  (t) given by

x (t) = et; y (t) = ln (t+ 5) ; z (t) = sin t; t 2 [0;1):

If we know that a ( (t)) = a (x (t) ; y (t) ; z (t)) = t2 + 1; �nd b ( (t)) and c ( (t)) :

Solution:

By the theory of �rst order quasilinear equation, we know that 0 (t) is parallel to the vector
�eld (a ( (t)) ; b ( (t)) ; c ( (t))) for all t 2 [0;1). Hence there exists a function � (t) such that8>>>>>><>>>>>>:

dx

dt
= � (t) a (x (t) ; y (t) ; z (t))

dy

dt
= � (t) b (x (t) ; y (t) ; z (t))

dz

dt
= � (t) c (x (t) ; y (t) ; z (t))

for all t 2 [0;1): By the information given, we know that � (t) = et= (t2 + 1) : Hence

b ( (t)) =
t2 + 1

et
1

t+ 5
and c ( (t)) =

t2 + 1

et
cos t; t 2 [0;1):

�
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6. (10 points) The Laplace operator 4 has the e¤ect of averaging (there are essentially
in�nitely many ways to see this). To realize this, you are required to do the following problem.
Assume u (x1; :::; xn) : Rn ! R is a smooth function and let

f� (t) := u (t�) ; t 2 (�1;1) ; (17)

where � is an unit vector in Rn; i.e., j�j = 1; � 2 Sn�1: Show that we have the average
formula

1

jSn�1j

Z
Sn�1

f 00� (0) d� (this is surface integral on S
n�1) =

1

n
(4u) (0) ; (18)

where jSn�1j is the surface area of Sn�1:

Solution:We have

f 0� (0) = Du (0) � �; f 0� (t) = Du (t�) � �

f 00� (0) =
@2u

@xi@xj

����
x=0

�i�j (sum over i; j), � = (�1; :::; �n) 2 Sn�1 � Rn

and so
1

n!n

Z
Sn�1

f 00� (0) d� =
1

n!n

Z
Sn�1

hA�; �i d� (19)

where n!n is the surface measure of Sn�1 and A : Rn ! Rn is the linear map given by Ax =
Mx; x 2 Rn; where

M =

�
@2u

@xi@xj

����
x=0

�
= the symmetric Hessian matrix of u at 0: (20)

Viewing Ax as a vector �eld on Rn; we have

div (Ax) = trace A = 4u (0) :

Applying the divergence theorem to (19), we get

1

n!n

Z
Sn�1

hA�; �i d� = 1

n!n

Z
B

div (Ax) dx =
1

n!n
(4u (0))!n: (21)

where !n is the volume of the unit ball B = B1 (0) in Rn: From (21), we conclude the average
formula

1

n!n

Z
Sn�1

f 00� (0) d� =
1

n
(4u) (0) ; f� (t) = u (t�) : (22)

�

7. (10 points)

(a) (5 points) Let U 2 Rn be a bounded domain with smooth boundary and let UT =
U � (0; T ] 2 Rn+1; �T = UT � UT ( �T is the space-time parabolic boundary of UT ).
Consider the parabolic initial/boundary value problem(

@tu��u = f in UT

u = g on �T
(23)

where f (x; t) and g (x; t) are given smooth functions on UT and �T respectively. Use
"energy method" to show that (23) has at most one solution u in the space C2

�
UT
�
:
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(b) (5 points) Consider the nonlinear parabolic PDE(
@tu��u = h (u) in UT

u = g on �T
(24)

where h(z) : R! R is a given smooth function and we assume that the boundary function g (x; t) =
g (x) is independent of time. Assume that u 2 C2

�
UT
�
is a solution to (24). Show that

the functional

E(t) :=
1

2

Z
U

jru (x; t)j2 dx�
Z
U

H (u (x; t)) dx; H 0 (z) = h (z) (25)

is decreasing in t 2 [0;1):We call it a Lyapunov functional for the parabolic equation
(24).

Solution:

(a) : It su¢ ces to such that the only solution w 2 C2
�
UT
�
to the following(

@tw ��w = 0 in UT

w = 0 on �T

is the zero solution w � 0: For each t 2 (0; T ]; we compute

d

dt

Z
U

w2 (x; t) dx =

Z
U

2w (x; t)
@w

@t
(x; t) dx =

Z
U

2w (x; t)�w (x; t) dx = �2
Z
U

jrw (x; t)j2 dx � 0;

where in the last equality we have used the divergence theorem and the fact that w = 0 on �T :
Hence Z

U

w2 (x; t) dx �
Z
U

w2 (x; 0) dx = 0 for all t 2 (0; T ]

and so w (x; t) � 0 for all (x; t) 2 UT :

(b) : We �rst compute

E 0(t) =

Z
U

r
�
@u

@t

�
� rudx�

Z
U

h(u)

�
@u

@t

�
dx:

By the divergence theorem we have

0 =

Z
U

div

�
@u

@t
ru
�
dx =

Z
U

r
�
@u

@t

�
� rudx+

Z
U

�
@u

@t

�
�udx;

where the �rst equality is due to the identityZ
U

div

�
@u

@t
ru
�
dx =

Z
@U

@u

@t
(ru � nout) d�; t 2 (0; T ]

and the fact
@u

@t
(x; t) =

@g (x)

@t
= 0; x 2 @U:

Now we have

E 0(t) = �
Z
U

�
@u

@t

�
�udx�

Z
U

h(u)

�
@u

@t

�
dx = �

Z
U

�
@u

@t

�2
dx � 0:

The proof is done. �
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8. (10 points) Let L be a second order linear operator of the form

Lu =
nX

i; j=1

aij (x; t)
@2u

@xi@xj
+

nX
i=1

bi (x; t)
@u

@xi
+ c (x; t)u� @u

@t
; (x; t) 2 UT = U � (0; T ];

where U is a bounded domain in Rn and all coe¢ cients are continuous on �UT : We assume
that the equation is uniformly parabolic in the sense that there exists a constant � > 0 such
that

nX
i; j=1

aij (x; t) �i�j � � j�j2 ; 8 � 2 Rn; 8 (x; t) 2 UT :

The classical maximum principle says that if u 2 C21 (UT ) \ C0
�
�UT
�
satis�es Lu = 0 in UT ;

and c (x; t) satis�es the sign condition c � 0 in UT ; then

max
�UT
juj � max

�T
juj ; (26)

where �T = UT �UT is the space-time parabolic boundary of UT : Show that if we have replace
the condition by c � " in UT (" > 0 is a constant), then (26) becomes

max
�UT
juj � e"T �max

�T
juj : (27)

Hint: consider v (x; t) = f (t)u (x; t) for some suitable function f (t) :

Solution:

Let v (x; t) = e�"tu (x; t) ; then v satis�es

~Lv = 0; ~L = L� ":

The ~c for ~L satis�es ~c (x; t) � 0 in UT : Hence

e�"T max
�UT
juj � max

�UT
jvj = max

�T
jvj � max

�T
juj :

�

9. (10 points) The Maxwell equations are given by8>><>>:
Et = curl B

Bt = �curl E

div B = div E = 0;

(28)

where E (x1; x2; x3; t) : R3 � (�1;1) ! R3 and the same for B (x1; x2; x3; t) : Show that if
E = (E1; E2; E3) and B = (B1; B2; B3) solve the Maxwell equations, then u satis�es the wave
equation

utt (x; t)�4u (x; t) = 0; x = (x1; x2; x3) (29)

where u = Ei or Bi (i = 1; 2; 3) :

Solution:

For convenience, just look at u = E1: We have

E1t =
@B3

@x2
� @B2

@x3
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and then

E1tt =
@

@x2
B3
t �

@

@x3
B2
t

= � @

@x2

�
@E2

@x1
� @E1

@x2

�
� @

@x3

�
@E3

@x1
� @E1

@x3

�
=
@2E1

@x22
+
@2E1

@x23
� @

@x2

@E2

@x1
� @

@x3

@E3

@x1

=
@2E1

@x22
+
@2E1

@x23
� @

@x1

�
@E2

@x2
+
@E3

@x3

�
(note that div E = 0)

=
@2E1

@x22
+
@2E1

@x23
� @

@x1

�
�@E

1

@x1

�
= 4E1:

The proof is done. �
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