DEPARTMENT OF MATHEMATICS CHIAO TUNG UNIVERSITY Ph. D. Qualifying Examination February, 2010 Analysis (TOTAL 100 PTS)

- 1. (50%) Prove or disprove the following statements:
 - (a) Let $f : [0, \infty) \to \mathbb{R}$ be continuous. Then f is Lebesgue integrable on $[0, \infty)$ if and only if the improper integral $\int_0^\infty f(x) dx$ exists.
 - (b) $L^2(X, B, \mu) \setminus L^1(X, B, \mu) \neq \phi$, where $\mu(X) = 1$.
 - (c) For every $\epsilon > 0$ and every Lebesgue measurable set A in \mathbb{R}^n , there exist an open set V and a closed set F such that $F \subset A \subset V$ and $m(V \setminus F) < \epsilon$, where m denotes the Lebesgue measure on \mathbb{R}^n .
 - (d) Let $1 and <math>f_n \in L^p[-\pi, \pi]$ with $||f_n f_{n+1}||_p \le 1/(n\sqrt{n})$ for all $n \ge 1$. Then f_n converges in $L^p[-\pi, \pi]$.
 - (e) There exists $f \in C[0, 1]$ such that $f' \in L^1[0, 1]$ and

$$\int_0^1 f'(x)dx \neq f(1) - f(0).$$

Solution:

(a) False. Consider $f(x) = \sin x/x$. Then f is not Lebesgue integrable on $[0, \infty)$, but $\int_0^\infty \frac{f(x)}{x} dx = \pi/2$.

(b) False. By Holder's inequality, $L^2(X, B, \mu) \subset L^1(X, B, \mu)$.

(c) True. Write $A = \bigcup_{m=1}^{\infty} A_m \cup \tilde{A}$, where $A_m = \{x \in A : m-1 < \|x\| < m\}$ and $\tilde{A} = A \setminus \bigcup_m A_m$. We have $m(\tilde{A}) = 0$. Applying the regularity of m to each A_m , we can find open sets V_m and closed set F_m such that $F_m \subset A_m \subset V_m$ and $m(V_m \setminus F_m) < \epsilon/2^{m+1}$ for each m. Set $F = \bigcup_m F_m$ and $V = \bigcup_m V_m \cup \tilde{V}$, where \tilde{V} is an open set containing \tilde{A} with $m(\tilde{V}) < \epsilon/2$, which are the desired.

(d) True. We have
$$\sum_{n=1}^{\infty} ||f_n - f_{n+1}||_p \le \sum_{n=1}^{\infty} 1/(n\sqrt{n}) < \infty$$

By Minkowski's inequality or the completeness of $L^p[-\pi,\pi]$, (d) follows.

(e) Consider the Canter ternary function.

2.(10%) Let ν be the Borel measure defined by

$$\nu(E) = \int_E \frac{dx}{(x^2+1)^2} \quad \text{for all Borel subsets } E \quad \text{of } \mathbb{R}.$$

(a) Prove that

$$\int_{\mathbb{R}} f(x)d\nu(x) = \int_{\mathbb{R}} \frac{f(x)}{(x^2+1)^2} dx$$

for all nonnegative Borel measurable functions f on \mathbb{R} .

(b) Find the value of
$$\int_{\mathbb{R}} |x| d\nu(x)$$
.

Solution:

(a)

$$\nu(E) = \int_E \frac{dx}{(x^2+1)^2} \Longrightarrow \int_{\mathbb{R}} \chi_E d\nu(x) = \int_{\mathbb{R}} \frac{\chi_E}{(x^2+1)^2} dx$$
$$\Longrightarrow \int_{\mathbb{R}} f(x) d\nu(x) = \int_{\mathbb{R}} \frac{f(x)}{(x^2+1)^2} dx \quad \text{for all simple functions } f$$

For $f \ge 0$, choose simple functions $f_n \uparrow f$. Replace f in the last equality by f_n and then apply the Monotone Convergence Theorem. The desired result follows.

(b)

$$\int_{\mathbb{R}} |x| d\nu(x) = \int_{\mathbb{R}} \frac{|x|}{(x^2 + 1)^2} dx = 2 \int_0^\infty \frac{x}{(x^2 + 1)^2} dx$$
$$= -\frac{1}{x^2 + 1} \Big|_0^\infty = 1$$

3. (10%) Let $\{a_n\}_{n=0}^{\infty}$ be a complex sequence such that $\sum_{n=0}^{\infty} a_n b_n$ converges for all complex $\{b_n\}_{n=0}^{\infty} \in \ell^2$. For any positive integer N, define $T_N : \ell^2 \mapsto \mathbb{C}$ by

$$T_N(\{b_n\}) = \sum_{n=0}^N a_n b_n.$$

- (a) Prove that $T_N \in (\ell^2)^*$ and $||T_N|| = (\sum_{n=0}^N |a_n|^2)^{1/2}$.
- (b) Is $\{a_n\}_{n=0}^{\infty} \in \ell^2$? Why?

Solution: (a)

$$\left| T_N(\{b_n\}) \right| \le \sum_{n=0}^N |a_n b_n| \le \left(\sum_{n=0}^N |a_n|^2 \right)^{1/2} \left(\sum_{n=0}^N |b_n|^2 \right)^{1/2} \\ \Longrightarrow T_N \in (\ell^2)^*$$

Moreover, $||T_N|| \leq (\sum_{n=0}^N |a_n|^2)^{1/2}$. Consider $b_n = \bar{a_n}$. We get the equality. **Remark:** We can get (a) by using Riesz representation Theorem.

(b) follows from the uniform boundedness principle by considering the family $\{T_N\}_{N=1}^{\infty}$, where $T_N : \ell^2 \mapsto \mathbb{C}$.

- 4. (10%) Set $f_n(t) = e^{int}$, where $n \ge 1$.
 - (a) Prove that $f_n \to 0$ weakly in $L^2[-\pi, \pi]$.
 - (b) Is $f_n \to 0$ in L^2 -norm? Why?

Solution: (a) For any $g \in L^2[-\pi,\pi]$, choose step functions $g_m = \chi_{[c,d]}$ such that $||g_m - g||_2 \longrightarrow 0$. We have

$$\int_{-\pi}^{\pi} f_n(x)g_m(x)dx = \int_c^d e^{inx}dx \longrightarrow 0 \quad \text{as} \quad n \to \infty$$

and

(b)

$$\left| \int_{-\pi}^{\pi} f_n(x)g(x)dx - \int_{-\pi}^{\pi} f_n(x)g_m(x)dx \right| \le \int_{-\pi}^{\pi} |g(x) - g_m(x)|dx$$
$$\le (2\pi)^{1/2} ||g - g_m||_2 \longrightarrow 0$$

$$||f_n - 0||_2^2 = \int_{-\pi}^{\pi} |e^{inx}|^2 dx = 2\pi \not\to 0$$

5. (10%) Let $T \in (C[0,1])^*$ such that $T(1 + x + \dots + x^n) = 0$ for all $n \ge 0$. Prove that T = 0.

Solution: For any $p(x) = a_0 + a_1x + \cdots + a_nx^n$, we have

$$p(x) = \sum_{k=0}^{n} a_k ((1 + x + \dots + x^k) - (1 + x + \dots + x^{k-1})).$$

By the linearity of T and the hypothesis,

$$T(p(x)) = \sum_{k=0}^{n} a_k (T(1+x+\dots+x^k) - T(1+x+\dots+x^{k-1})) = 0.$$

We know that the set of polynomials is dense in C[0, 1], so by the continuity of T, T = 0.

6. (10%) Define the function Tf by the formula:

$$Tf(y) = \int_{-\infty}^{\infty} \frac{f(x)\sqrt{x^2+1}}{x^2+y^2+1} dx \qquad (y \in \mathbb{R}).$$

- (a) Prove that if $f \in L^1(\mathbb{R})$, then $Tf \in L^1(\mathbb{R})$.
- (b) Find the value $\sup_{\|f\|_1 \neq 0} \frac{\|Tf\|_1}{\|f\|_1}$.

Solution: By Fubini's theorem, we get

$$\begin{aligned} \|Tf\|_{1} &= \int_{-\infty}^{\infty} |Tf(y)| dy \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{|f(x)|\sqrt{x^{2}+1}}{x^{2}+y^{2}+1} \, dx dy \\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \frac{1}{x^{2}+y^{2}+1} \, dy \right) |f(x)|\sqrt{x^{2}+1} \, dx \\ &= \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{x^{2}+1}} \tan^{-1}(\frac{y}{\sqrt{x^{2}+1}}) \Big|_{-\infty}^{\infty} \right) |f(x)|\sqrt{x^{2}+1} \, dx = \pi \|f\|_{1} \end{aligned}$$

So (a) follows.

(b) The above argument (considering $f \ge 0$) also implies

$$\sup_{\|f\|_1 \neq 0} \frac{\|Tf\|_1}{\|f\|_1} = \pi$$