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1. (50%) Prove or disprove the following statements:

(a) Let f : [0,∞) 7→ R be continuous. Then f is Lebesgue integrable on
[0,∞) if and only if the improper integral

∫∞
0
f(x)dx exists.

(b) L2(X,B, µ) \ L1(X,B, µ) 6= φ, where µ(X) = 1.

(c) For every ε > 0 and every Lebesgue measurable set A in Rn, there
exist an open set V and a closed set F such that F ⊂ A ⊂ V and
m(V \ F ) < ε, where m denotes the Lebesgue measure on Rn.

(d) Let 1 < p < ∞ and fn ∈ Lp[−π, π] with ‖fn − fn+1‖p ≤ 1/(n
√
n) for

all n ≥ 1. Then fn converges in Lp[−π, π].

(e) There exists f ∈ C[0, 1] such that f ′ ∈ L1[0, 1] and∫ 1

0

f ′(x)dx 6= f(1)− f(0).

Solution:
(a) False. Consider f(x) = sinx/x. Then f is not Lebesgue integrable

on [0,∞), but

∫ ∞
0

f(x)

x
dx = π/2.

(b) False. By Holder’s inequality, L2(X,B, µ) ⊂ L1(X,B, µ).
(c) True. Write A = ∪∞m=1Am ∪ Ã, where Am = {x ∈ A : m − 1 <

‖x‖ < m} and Ã = A \ ∪mAm. We have m(Ã) = 0. Applying the regularity
of m to each Am, we can find open sets Vm and closed set Fm such that
Fm ⊂ Am ⊂ Vm and m(Vm \ Fm) < ε/2m+1 for each m. Set F = ∪mFm and
V = ∪mVm ∪ Ṽ , where Ṽ is an open set containing Ã with m(Ṽ ) < ε/2,
which are the desired.

(d) True. We have
∞∑
n=1

‖fn − fn+1‖p ≤
∞∑
n=1

1/(n
√
n) <∞

By Minkowski’s inequality or the completeness of Lp[−π, π], (d) follows.
(e) Consider the Canter ternary function.
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2.(10%) Let ν be the Borel measure defined by

ν(E) =

∫
E

dx

(x2 + 1)2
for all Borel subsets E of R.

(a) Prove that ∫
R
f(x)dν(x) =

∫
R

f(x)

(x2 + 1)2
dx

for all nonnegative Borel measurable functions f on R.

(b) Find the value of

∫
R
|x|dν(x).

Solution:
(a)

ν(E) =

∫
E

dx

(x2 + 1)2
=⇒

∫
R
χEdν(x) =

∫
R

χE
(x2 + 1)2

dx

=⇒
∫

R
f(x)dν(x) =

∫
R

f(x)

(x2 + 1)2
dx for all simple functions f

For f ≥ 0, choose simple functions fn ↑ f . Replace f in the last equality
by fn and then apply the Monotone Convergence Theorem. The desired
result follows.

(b) ∫
R
|x|dν(x) =

∫
R

|x|
(x2 + 1)2

dx = 2

∫ ∞
0

x

(x2 + 1)2
dx

= − 1

x2 + 1

∣∣∣∣∞
0

= 1
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3. (10%) Let {an}∞n=0 be a complex sequence such that
∑∞

n=0 anbn converges
for all complex {bn}∞n=0 ∈ `2. For any positive integer N ,
define TN : `2 7→ C by

TN({bn}) =
N∑
n=0

anbn.

(a) Prove that TN ∈ (`2)∗ and ‖TN‖ = (
∑N

n=0 |an|2)1/2.

(b) Is {an}∞n=0 ∈ `2? Why?

Solution: (a)∣∣∣∣TN({bn})
∣∣∣∣ ≤ N∑

n=0

|anbn| ≤
( N∑
n=0

|an|2
)1/2( N∑

n=0

|bn|2
)1/2

=⇒ TN ∈ (`2)∗

Moreover, ‖TN‖ ≤ (
∑N

n=0 |an|2)1/2. Consider bn = ān. We get the equality.
Remark: We can get (a) by using Riesz representation Theorem.
(b) follows from the uniform boundedness principle by considering the

family {TN}∞N=1, where TN : `2 7→ C.

4. (10%) Set fn(t) = eint, where n ≥ 1.

(a) Prove that fn → 0 weakly in L2[−π, π].

(b) Is fn → 0 in L2-norm? Why?

Solution: (a) For any g ∈ L2[−π, π], choose step functions gm = χ[c,d]

such that ‖gm − g‖2 −→ 0. We have∫ π

−π
fn(x)gm(x)dx =

∫ d

c

einxdx −→ 0 as n→∞

and ∣∣∣∣∫ π

−π
fn(x)g(x)dx−

∫ π

−π
fn(x)gm(x)dx

∣∣∣∣ ≤ ∫ π

−π
|g(x)− gm(x)|dx

≤ (2π)1/2‖g − gm‖2 −→ 0

(b)

‖fn − 0‖22 =

∫ π

−π
|einx|2dx = 2π 9 0
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5. (10%) Let T ∈ (C[0, 1])∗ such that T (1 + x+ · · ·+ xn) = 0 for all n ≥ 0.
Prove that T = 0.

Solution: For any p(x) = a0 + a1x+ · · ·+ anx
n, we have

p(x) =
n∑
k=0

ak((1 + x+ · · ·+ xk)− (1 + x+ · · ·+ xk−1)).

By the linearity of T and the hypothesis,

T (p(x)) =
n∑
k=0

ak(T (1 + x+ · · ·+ xk)− T (1 + x+ · · ·+ xk−1)) = 0.

We know that the set of polynomials is dense in C[0, 1], so by the continuity
of T , T = 0.

6. (10%) Define the function Tf by the formula:

Tf(y) =

∫ ∞
−∞

f(x)
√
x2 + 1

x2 + y2 + 1
dx (y ∈ R).

(a) Prove that if f ∈ L1(R), then Tf ∈ L1(R).

(b) Find the value sup
‖f‖1 6=0

‖Tf‖1
‖f‖1

.

Solution: By Fubini’s theorem, we get

‖Tf‖1 =

∫ ∞
−∞
|Tf(y)|dy ≤

∫ ∞
−∞

∫ ∞
−∞

|f(x)|
√
x2 + 1

x2 + y2 + 1
dxdy

=

∫ ∞
−∞

(∫ ∞
−∞

1

x2 + y2 + 1
dy

)
|f(x)|

√
x2 + 1 dx

=

∫ ∞
−∞

(
1√

x2 + 1
tan−1(

y√
x2 + 1

)

∣∣∣∣∞
−∞

)
|f(x)|

√
x2 + 1 dx = π‖f‖1

So (a) follows.
(b) The above argument (considering f ≥ 0) also implies

sup
‖f‖1 6=0

‖Tf‖1
‖f‖1

= π
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