

< 中里士到王资格赛> 2月,2010

You may quote any standard results without proving them, but state clearly what facts you are assuming. Answers without explanation may receive no credit. Let \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} denote the integers, rational numbers, real numbers, and complex numbers, respectively.

1. Let F₃ denote the field of 3 elements. Let

$$A := F_3[x]/(x^3 - x + 1)$$
 and $B := F_3[x]/(x^3 + x + 1)$

be the quotient rings where $\langle f(x) \rangle$ denotes the ideal of the polynomial ring $\mathbf{F}_3[x]$ generated by f(x).

- (1) [5%] Is the polynomial $x^{27} x \in F_3[x]$ divisible by $x^3 x + 1 \in F_3[x]$?
- (2) [5%] Are rings A and B isomorphic?
- (3) [5%] Describe the additive group structure of A by the fundamental theorem of finitely generated abelian groups.
- (4) [5%] Let $\phi: A \to \mathbb{C}^{\times}$ be a nontrivial group homomorphism where \mathbb{C}^{\times} denotes the multiplicative group of nonzero complex numbers. Describe the image of ϕ .
- 2. A group G is called a solvable group if there exists a series of subgroups:

$$\{1\} = G_n \subseteq G_{n-1} \subseteq \dots \subseteq G_1 \subseteq G_0 = G$$

(for some n) such that G_i is normal in G_{i-1} and the quotient G_{i-1}/G_i is abelian for each $i=1,\ldots,n$. Such a series of subgroups is called a *solvable series*. A solvable group G is *polycyclic* if it has a solvable series such that G_{i-1}/G_i is cyclic.

- (1) [5%] Show that a group of order 250 is solvable.
- (2) [5%] Give an example of a solvable group which is not polycyclic.
- (3) [10%] Prove that every homomorphism image of a polycyclic group is also polycyclic.
- 3. The Jacobson radical J(R) of a ring R with unity is defined to be the intersection of all maximal left ideals of R.
 - (1) [5%] Find $J(\mathbb{Z})$.
 - (2) [5%] Suppose that $R := \{ \frac{m}{n} \in \mathbb{Q} \mid n \text{ is odd } \}$. Show that

$$J(R) = \{ \frac{m}{n} \in \mathbb{Q} \mid n \text{ is odd and } m \text{ is even} \}.$$

- (3) [10%] Suppose that $f: R \to S$ is a surjective ring homomorphism. Show that $f(J(R)) \subset J(S)$.
- 4. Let R be a commutative ring with unity. Let A, B, C be R-modules with (R-module) homomorphisms $f: A \to C$ and $g: B \to C$. Let $A \times_C B$ denote the subset of all pairs (a, b) with $a \in A$ and $b \in B$ such that f(a) = g(b). Let $p_1: A \times_C B \to A$ be the projection $p_1(a, b) = a$ and $p_2: A \times_C B \to B$ be the projection $p_2(a, b) = b$.
 - (1) [5%] Show that $A \times_C B$ is a submodule of $A \times B$.
 - (2) [5%] Show that $f \circ p_1 = g \circ p_2$.
 - (3) [5%] Suppose that there exist an R-module Z and homomorphisms $p_1': Z \to A$, $p_2': Z \to B$ such that $f \circ p_1' = g \circ p_2'$. Show that there exists a unique homomorphism $\phi: Z \to A \times_C B$ such that $p_1' = p_1 \circ \phi$ and $p_2' = p_2 \circ \phi$.
 - (4) [5%] Suppose now B = 0. Show that $A \times_C B$ is isomorphic to the kernel of f.

5. Let $n \ge 2$ be a positive integer, and let Ψ_n denote the set of all primitive n-th roots of unity in \mathbb{C} , i.e., Ψ_n is the set of generators of the group of n-th roots of unity in \mathbb{C} . Define

$$\Phi_n(x) := \prod_{\alpha \in \Psi_n} (x - \alpha).$$

- (1) [5%] Show that $\Phi_n(x)$ is in $\mathbb{Q}[x]$ and the degree of $\Phi_n(x)$ is equal to the Euler phi-
- (2) [5%] Show that

$$x^n - 1 = \prod_{d \mid n} \Phi_d(x)$$

 $x^{n} - 1 = \prod_{d \mid n} \Phi_{d}(x)$ where the product is over all divisors d of n.

- (3) [5%] Find $\Phi_{12}(x)$.
- (4) [5%] Show that $\Phi_{2n}(x) = \Phi_n(-x)$ for all odd integers n > 1.