DEPARTMENT OF MATHEMATICS NATIONAL CHIAO TUNG UNIVERSITY

Ph. D. Qualifying Examination Fall, 2009.

Analysis

Answer all of the following questions.

- 1. Let f be a continuous function one-to-one from a compact space X onto a Hausdorff space Y. Prove that f is an homeomorphism.
- 2. Let (X, μ) be a σ -finite measure space with $\mu(X) = +\infty$. Show that for any finite positive number M, there is some measurable set A in X such that $M < \mu(A) < +\infty$.
- 3. Suppose a Borel subset A of (0,1] has measure zero. Let

$$A^2 = \{x^2 : x \in A\}, \quad A^{1/2} = \{\sqrt{x} : x \in A\}, \text{ and } A^{-1} = \{1/x : x \in A\}.$$

Discuss which of A^2 , $A^{1/2}$ and A^{-1} have measure zero.

- 4. Suppose that f is a real-valued differentiable function on $(-\epsilon, 1+\epsilon)$ for some $\epsilon > 0$. Prove that its derivative function f' is Lebesque measurable on [0,1].
- 5. Prove that if a real-valued function f is integrable on [a, b] and

$$\int_{a}^{x} f(t) \, dt = 0$$

for all x in [a, b] then f(t) = 0 a.e. in [a, b].

- 6. Let $f, f_n \in L^2(\mathbb{R})$ such that $f_n \to f$ a.e., and $||f_n|| \to ||f||$. Prove that $f_n \to f$ in norm. Can you obtain a similar result for $L^p(\mathbb{R})$ for arbitrary 1 ?
- 7. Show the Dini Theorem: Let f_n be a monotonic decreasing sequence of continuous real-valued functions on a compact space X such that $f_n(x) \downarrow f(x)$ for all x in X. Show that $f_n \to f$ uniformly on X, if f is continuous on X. Give examples to verify the cases X is not compact, or f is not continuous.
- 8. Let X and Y be compact Hausdorff spaces. Let C(X), C(Y) and $C(X\times Y)$ be the set of all continuous real-valued functions on X, Y, and $X\times Y$, respectively. Show that for each continuous real-valued function f on $X\times Y$ and each $\epsilon>0$, there are continuous real-valued functions g_1,\ldots,g_n on X and h_1,\ldots,h_n on Y such that for each $(x,y)\in X\times Y$ we have

 $\left| f(x,y) - \sum_{i=1}^{n} g_i(x)h_i(y) \right| < \epsilon.$

- 9. Let E, F be Banach spaces and $T: E \to F$ be linear. Equip with E and F the norm topology or the weak topology. Then we can discuss the continuity of T. There are 4 different versions: T is norm-norm continuous, norm-weak continuous, weak-norm continuous, or weak-weak continuous. Show that among these 4 variants, T being norm-norm continuous is the weaker one.
- 10. Let f be a continuous function on [0,1]. Let P be the class of all polynomials p. Show that a continuous function g in C[0,1] can be uniformly approximated on [0,1] by a sequence $p_n(f)$ with $p_n \in P$ if and only if g(x) = g(y) whenever f(x) = f(y).