交通大學應用數學系博士班資格考實變分析試題(九十七年九月)

97.9.18

1. (15分) Let λ be the Lebesgue measure and let $\{E_k\}$ be a sequence of Lebesgue measurable subsets of [0,1] satisfying

$$\lim_{k \to \infty} \lambda(E_k) = 1.$$

Show that, for any $0 < \varepsilon < 1$, there exists a subsequence $\{E_{k_n}\}$ such that

$$\lambda\bigg(\bigcap_{n=1}^{\infty} E_{k_n}\bigg) > \varepsilon.$$

2. (15分) Suppose that f(x) is a Lebesgue integrable function on [a,b]. Prove that there exists a zero-measure subset $Z \subseteq [a,b]$ such that, for any real number α and $x \in [a,b] \setminus Z$, we have

$$\frac{d}{dx} \int_{a}^{x} |f(t) - \alpha| \, dt = |f(x) - \alpha|.$$

3. (15分) Let X be a measurable subset of \mathbb{R}^n and f the Lebesgue integrable function on X. Show that

$$I := \left\{ \int_{E} f(x)dx : E \text{ is a measurable subset of } X \right\}$$

is a closed interval. Point out the two end points of I.

4. (15 %) Let (X, \mathcal{B}, ν) and (X, \mathcal{B}, μ) be σ -finite measure spaces, and let f be a \mathcal{B} -measurable and integrable over X with respect to ν . Let \mathcal{B}_0 be a σ -algebra satisfying $\mathcal{B}_0 \subseteq \mathcal{B}$ (f may not be \mathcal{B}_0 -measurable). Show that there is a unique \mathcal{B}_0 -measurable functions g, a unique nonnegative \mathcal{B}_0 -measurable functions h, and a unique measure δ which is singular with respect to μ , such that

$$\int_X f \, d\nu = \int_X gh \, d\mu + \int_X g \, d\delta.$$

5. (16分) Let $1 \leq p < \infty$ and f be a function such that f and its derivative f' are locally L^p -integrable on \mathbb{R} . Show that there is a constant C such that

$$|f(x)| \le C \left(\int_{|y-x|<1} \{|f'(y)| + |f(y)|\}^p dy \right)^{1/p}$$
 for a.e. $x \in \mathbb{R}$.

6. Given a measurable function f on \mathbb{R} , define a family of functions $\{B_{\alpha}(f)\}_{\alpha>0}$ by

$$B_{\alpha}(f)(x) = \int_{-\infty}^{x} e^{-\alpha(x-y)} f(y) dy, \qquad \alpha > 0, \ x \in \mathbb{R}.$$

Show the following properties of $B_{\alpha}(f)$:

(i)
$$||B_{\alpha}(f)||_{L^{p}} \le \alpha^{-1}||f||_{L^{p}}$$
 for $\alpha > 0$ and $1 \le p < \infty$; (8分)

(ii)
$$\lim_{\alpha \to \infty} \|\alpha B_{\alpha}(f) - f\|_{L^{p}} = 0$$
 for $\alpha > 0$ and $1 \le p < \infty$; (8分)

(iii)
$$\|\alpha B_{\alpha}(f)\|_{L^p}$$
 is a non-decreasing function of $\alpha \in (0, \infty)$. (8分)