1. (12%) Suppose $f, g \in L^1[0,1]$ and $|f(x)g(x)| \ge 1$ for any $x \in [0,1]$. Prove that

$$\left(\int_0^1 |f(x)| dx\right) \left(\int_0^1 |g(x)| dx\right) \ge 1.$$

2. (12%) Show that the set K defined by

$$\mathcal{K} = \{ f \in C[0,1] : ||f|| \le 1, |f(x) - f(y)| \le 2|x - y|^{1/2} \text{ for any } x, y \in [0,1] \}$$

is a compact subset of C[0,1]. Here $\|\cdot\|$ is the sup norm.

- 3. (12%) Let λ be the Lebesgue measure and let E be a Lebesgue measurable subset of [0,1] such that $\lambda(E \cap [a,b]) \geq \frac{1}{2}(b-a)$ for any $0 \leq a < b \leq 1$. Show that $\lambda(E) = 1$.
- 4. (12%) Let $A \subset \mathbb{R}$ be a set of Lebesgue measure zero. Show that

$$E = \{(x, y) \in \mathbb{R}^2 : x + y \in A\}$$

has 2-dimensional Lebesgue measure zero.

5. (12%) Explain carefully why the following Lebesgue integrals and limit

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{n}{1 + ne^{x^2}} \, dx$$

exist, then quote appropriate theorem(s) to evaluate this limit.

- 6. (12%) Let $f \in L^1[0,1]$ and f_k be a sequence in $L^2[0,1]$ such that $||f_k||_2 \le 1$ for all k. Suppose $f_k \to f$ in $L^1[0,1]$. Show that $f \in L^2[0,1]$ and $||f||_2 \le 1$.
- 7. (14%) Suppose $f \in L^p(\mathbb{R})$, $1 , and <math>F(x) = \int_0^x f(t) dt$. Show that for any $x \in \mathbb{R}$, F is not necessarily differentiable at x but

$$\left(\frac{F(x+h)-F(x)}{h}\right)h^{\frac{1}{p}}\to 0 \quad \text{as } h\to 0.$$

8. (14%) Consider the measurable space $(\mathbb{N}, \mathcal{B})$ where \mathcal{B} is the collection of all subsets of \mathbb{N} . Let δ be the Dirac measure at 1 (i.e. $\delta(E) = 1$ if $1 \in E$, $\delta(E) = 0$ otherwise), σ be the counting measure, and μ be the measure defined by

$$\mu(E) = \sum_{n \in E} \frac{1 - (-1)^n}{n^2}, E \in \mathcal{B}.$$

Find pairs of measures from δ , σ , μ such that one is absolutely continuous with respect to the other. Characterize their Radon-Nikodym derivatives.