- [20%] 1. State Bruck-Chowla-Ryser theorem and use it to show that a symmetric 2-(43, 15, 5) design does not exist.
- [15%] 2. Let $\mathscr{D} = (X, \mathbf{B})$ be a symmetric 2- (v, k, λ) design, and let σ be an automorphism of \mathscr{D} . Show that the number of points fixed by σ is the same as the number of blocks fixed by σ .
- [20%] 3. Let G be an additive abelian group of order v and let D₁,..., D_t be subsets of size k in G. If the differences arising from the D_i, 1 ≤ i ≤ t, give each nonzero element of G exactly λ times, then D₁,..., D_t are said to be a (v, k, λ) difference system in G.
 Let F = (F, +, ·) be a finite field of order q, and set F* = F \ {0}. Take a subgroup D of (F*, ·) of order k.
 - (a) Let t_1D , t_2D , ..., $t_{(q-1)/k}D$ be the left cosets of D in F^* . Thus, $\bigcup_{i=1}^{(q-1)/k}t_iD = F^*$ and $t_iD \cap t_jD = \emptyset$ if $i \neq j$. Show that these t_iD , $i = 1, \ldots, (q-1)/k$, form a difference system in the additive group (F, +).
 - (b) What is λ ? (Show your arguments.)
- [15%] 4. Let $\mathcal{R} = \{0, 1, \dots, n-1\}$ and let M_1, M_2, \dots, M_{n-1} be n-1 mutually orthogonal latin squares with entries from \mathcal{R} . Then there is an affine plane \mathcal{A} of order n such that for any distinct nonzero $s, r \in \mathcal{R}$, the matrices M_s and M_r have the property: for each ordered pair $x, y \in \mathcal{R}$, there is exactly one ordered pair $i, j \in \mathcal{R}$ such that M_s has x in the position (i, j) and M_r has y in the position (i, j). Describe how such an affine plane can be constructed.
- [15%] 5. Show that the only latin square of order 4, in normal form, which has an orthogonal mate is:

$$\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{pmatrix}.$$

Find two orthogonal mates of this matrix.

[15%] 6. Let \mathcal{D} be a t design, and let s < t be a positive integer. Show that \mathcal{D} is also an s-design.