DEPARTMENT OF APPLIED MATHEMATICS NATIONAL CHIAO-TUNG UNIVERSITY

Ph. D. Qualifying Examination Fall, 2006.

REAL ANALYSIS

Answer all of the following 7 questions. Each question carries 15 points. The total score is 105 points.

- 1. Prove that the measure of any countable subset $A = \{a_1, a_2, \ldots\}$ of \mathbb{R} is zero.
- 2. Prove that if a real-valued function f is integrable on [a, b] and

$$\int_{a}^{x} f(t) \, dt = 0$$

for all x in [a, b] then f(t) = 0 a.e. in [a, b].

3. Let f be a Riemann integrable function on [0,1] and $f(x) \ge r > 0$ for all x in [0,1]. Show that

$$\int_0^1 \frac{1}{f(x)} \, dx \ge \frac{1}{\int_0^1 f(x) \, dx}.$$

- 4. Let f be a real-valued measurable function on a measure space (X, \mathcal{A}, μ) . Show that
 - (a) If \mathcal{B} is the class of sets B in \mathbb{R} such that $f^{-1}(B) \in \mathcal{A}$ then \mathcal{B} is a σ -algebra which contains the Borel sets.
 - (b) If $\nu(B) := \mu(f^{-1}(B))$ for all B in B then ν is a measure on B.

- 5. An extended real valued function $f: \mathbb{R} \longrightarrow [-\infty, +\infty]$ is said to be lower semicontinuous at the point y if $f(y) \neq -\infty$ and $f(y) \leq \lim \inf_{x \to y} f(x)$. Show the following statements.
 - (a) Let f(y) be finite. Then f is lower semicontinuous at y if and only if given $\epsilon > 0$, there is a $\delta > 0$ such that $f(y) \leq f(x) + \epsilon$ for all x with $|x y| < \delta$.
 - (b) A real valued function f is lower semicontinuous on (a, b) if and only if the set $\{x \in \mathbb{R} : f(x) > \lambda\}$ is open for each real number λ .
 - (c) A lower semicontinuous real valued function f defined on [a, b] bounded from below assumes its minimum on [a, b].
 - (d) (Dini Theorem) Let $\{f_n\}_n$ be a sequence of lower semicontinuous functions defined on [a,b]. Suppose $f_n(x)$ monotonically increasing to 0 for all x in [a,b]. Then f_n converges to zero uniformly on [a,b].
- 6. Let μ_n be a non-decreasing sequence of measures defined on a measurable space (X, \mathcal{A}) in the sense that $\mu_n(A) \uparrow \mu(A)$ for all A in \mathcal{A} .
 - (a) Prove that μ is a measure on (X, \mathcal{A}) with respect to which all μ_n are absolutely continuous.
 - (b) On any fixed set A of finite μ measure, let f_n denote the Radon-Nikodym derivative of μ_n with respect to μ . Prove that almost everywhere (with respect to μ , and thus all μ_n) on A, $f_n \uparrow 1$.
- 7. Suppose we have a real-valued function $K \in L^1(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} K(x) dx = 1$. Let $K_{\epsilon}(x) = \epsilon^{-n} K(\frac{x}{\epsilon})$. Define

$$f_{\epsilon}(x) = (f * K_{\epsilon})(x) = \int_{\mathbb{R}^n} f(t)K_{\epsilon}(x-t) dt, \quad \forall x \in \mathbb{R}^n.$$

- (a) Prove that $f \in L^1(\mathbb{R}^n)$ then $||f_{\epsilon} f||_{L^1} \to 0$, as $\epsilon \to 0$.
- (b) Prove that $C_0^{\infty}(\mathbb{R}^n)$, the set of all infinitely differentiable functions vanishing at infinity, is norm dense in $L^1(\mathbb{R}^n)$.
- (c) Can you prove the same results for $L^p(\mathbb{R}^n)$ with $1 ? How is about the case <math>p = \infty$?