NCTU PhD Examination, Probability

February, 2006

- 1.(20 pts) Let X_n be a sequence of independent and identically distributed r.v.'s. Use suitable moment estimates to prove (1) WLLN for X_n in case of finite 2nd moment; (2)SLLN in case of finite 4th moment.
- 2.(15 pts) Let X have the geometric distribution with success probability $p \in (0,1)$. Find the expectation, the variance, the probability generating function, and the characteristic function of X.
- 3.(15 pts) Let Z_{λ} has a Poisson distribution with mean λ . Use CLT to prove that $(Z_{\lambda} \lambda)/\sqrt{\lambda}$ converges in distribution to N(0,1), as $\lambda \to \infty$. May consider the case λ be positive integer firstly and then go to the general case.
- 4.(20 pts) Let X_n be a sequence of r.v.'s and \mathcal{F}_n be an increasing sequence of subsigma algebras of \mathcal{F} . Assume that each X_n is a submartingale with respect to \mathcal{F}_n .
- (a) If ϕ is an increasing convex function with $E|\phi(X_n)| < \infty, \forall n$, prove that $\phi(X_n)$ is also a submartingale with respect to \mathcal{F}_n .
- (b) Prove that $(X_n a)^+$ is a submartingale if X_n is a submartingale, where a is a real.
- 5.(15 pts) Let g be a real-valued Lebesgue integrable function on [0,1]. Let U_n be iid uniform on [0,1]. Define $X_i = g(U_i)$. Discuss in what sense does the sample mean $\sum_{i=1}^{n} X_i/n$ approximate $\int_0^1 g(x)dx$ (Note: This is so-called Monte Carlo).
- 6. (15 pts) Consider a simple branching model in which we start with one single particle, at time 0. After one unit time, it branches out a random number of subparticles; each subparticle then branches independently and with the same offspring distribution (branching mechanism) as the original one, $\{p_k, k \geq 0\}$. Let Z_n denote the population number of particles at time n. Prove that Z_n is a Markov chain and write down its transition probabilities.