National Chiao Tung University PhD Qualifying Examination for Graph Theory

- In this test we follow the definitions and notation in West's book.
- Show that every minimal nonplanar graph is 2-connected. (10%)
- 2. Use the Matrix Tree Theorem to show that there are n^{n-2} trees with vertex set $\{1, 2, \dots, n\}$. (10%)
- 3. Let G be a simple n-vertex graph, where n > 3. Show that if $e(G) > \frac{n^2}{4}$ then G contains a triangle. (5%)
- 4. Show that a graph G has a 1-factor if and only if $o(G-S) \le |S|$ for every $S \subseteq V(G)$.(10%)
- 5. Show that the number of edges in a maximum matching of G is $\frac{1}{2}(n(G)-d)$, where $d = \max_{S \in V(G)} \{o(G - S) - |S|\}.(10\%)$
- 6. Prove that if G is a cubic graph then $\kappa(G) = \kappa'(G)$.(10%)
- 7. (a) Prove that every planar graph has a vertex of degree at most 5. (5%)
 - (b) Prove that every planar graph is 5-colorable. (10%)
- 8. Prove that if $\kappa(G) \ge \alpha(G)$ then G has a Hamiltonian cycle (unless $G = K_2$) (10%)
- 9. Given an optimal coloring of a k-chromatic graph, prove that for each color s there is a vertex with color s that is adjacent to vertices of the other k-1 colors. (10%)
- 10. Show that if $\binom{n}{p} 2^{1-\binom{p}{2}} < 1$, then R(p, p) > n. (10%)