Please do any FIVE of the following problems. Each problem counts 20 points.

- Let f(x) = √x²+1 and the Newton's iterates {x_n}, n≥0, be used to approximate the solution of f'(x) = 0. Find the basin of convergence of {x_n}.
 (Hint: Find the largest set of x₀ ∈ R to ensure the convergence of {x_n})
- 2. Let $\{p_n(x) | \deg(p_n) = n, n = 0, 1, \dots\}$ be a set of orthogonal polynomials on [-1, 1] with respect to a weight function w(x).
 - (a) Show that p_n has exactly n distinct zeros in (-1, 1).
 - (b) Suppose $w(x) = 1/\sqrt{1-x^2}$. Find p_0, p_1, p_2 and p_3 .
- 3. Suppose $f(x) \in C[0,1]$ is to be approximated by a polynomial r(x). Show that the least square approximation $r_n^*(x)$ exists uniquely for any degree n > 0 and $\lim_{n \to \infty} ||f(x) r_n^*(x)||_2 = 0 \text{ on } [0, 1].$
- 4. Let $A \in \mathbb{R}^{n \times n}$ be such that $A = (1 + \omega)P (N + \omega P)$, with $P^{-1}N$ nonsingular and with eigenvalues satisfying $1 \ge \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$.
 - (a) Find the values ω for which the following method $(1+\omega)Px^{(k+1)} = (N+\omega P)x^{(k)} + b, \quad k \ge 0,$ converges to the solution of Ax=b, for any initial $x^{(0)}$.
 - (b) What is the optimal ω for which the convergence rate in (a) is maximum.
- 5. Given $A \in \mathbb{R}^{n \times n}$, symmetric and positive definite. Suppose Ax = b is to be solved by the following algorithm:

Given
$$x_0 = 0, r_0 = b - Ax_0 = p_0, k = 0$$

while $r_k \neq 0$

$$\alpha_k = r_k^T r_k / p_k^T A p_k$$

$$x_{k+1} = x_k + \alpha_k p_k$$

$$r_{k+1} = r_k - \alpha_k A p_k$$
End $x = x_k$

Show that the solution is obtained within q steps if b lies in a q-dimensional invariant subspace of A.

- 6. Let $A \in \mathbb{R}^{n \times n}$ and symmetric.
 - (a) Show that A has exactly n real eigenvalues and all eigenvectors are orthogonal.
 - (b) If the eigenvalues satisfy $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$, then verify that

$$\lambda_1 = \max_{x \in \mathbb{R}^n} \frac{x^T A x}{x^T x}$$
 and $\lambda_n = \min_{x \in \mathbb{R}^n} \frac{x^T A x}{x^T x}$.

7. Given the problem $y' = f(x, y), y(0) = y_0$ where f satisfies the Lipschitz condition in y. Consider the numerical method

$$y_{n+1} = 4y_n - 3y_{n-1} - 2hf(x_{n-1}, y_{n-1}), \quad n \ge 1.$$

- (a) Determine the order of this method.
- (b) Discuss the property of convergence and stability for the given method.
- 8. Consider the Poisson's problem

$$-\Delta u = f(x, y), (x, y) \in R = (0, 1) \times (0, 1)$$

$$u = 0 \text{ on } \partial R.$$

and the second of the solution of deep for hely tested \$100

- (a) For solving the problem, derive a difference formula with uniform grid in \overline{R} and determine the order of your method.
- (b) Drive an iterative scheme which is able to solve the associated linear system in (a) and discuss the convergence property of your scheme with suitable assumption on f(x, y).