Ph.D. Qualifying Exam (Functional Analysis)

 (8 pts) Suppose N and F are linear subspaces of a normed linear space X, N is closed and F has finite dimension. Prove that

$$N+F=\{n+f:\ n\in N,\ f\in F\}$$

is closed.

- 2. (12 pts) Let H be a Hilbert space and $\{e_1, e_2, \cdots\}$ an orthonormal family in H.
 - (a) State and prove the Bessel inequality.
 - (b) Show that the Parseval identity is necessary and sufficient for the completeness of the orthonormal family.
- 3. (8 pts) Let V be a vector space and $T:V\to V$ a linear map. Suppose there is $x\in V$ such that $x,\ Tx,\ T^2x,\cdots$ span V. Prove that if $S:V\to V$ is linear and commutes with T, then there is a polynomial p(t) such that p(T)=S.
- 4. (8 pts) Let $\alpha = \{\alpha_1, \alpha_2, \cdots\}$ be a sequence of complex numbers such that the series $\sum_{j=1}^{\infty} \alpha_j \beta_j$ converges for every $\{\beta_j\} \in l_q$, $1 \le q < \infty$. Prove that $\alpha \in l_p$, where $\frac{1}{p} + \frac{1}{q} = 1$.
- (8 pts) Show that a compact operator on a Banach space maps weakly convergent sequences into norm convergent sequences.
- 6. (12 pts) Let M be a closed linear subspace of a normed linear space X. Show that if $M \neq X$, then there exists $f \in X \setminus M$ such that ||f|| = 1 and $||f g|| \ge \frac{1}{2}$ for all $g \in M$. Deduce that if X is infinite dimensional, then the unit sphere of X is never compact.
- 7. (8 pts) Let T be a self-adjoint operator on a complex Hilbert space H. Show that for any complex number α there exists λ in the spectrum of T such that

$$||Tx - \alpha x|| \ge |\lambda - \alpha| \, ||x|| \quad \text{for any } x \in H.$$

- 8. (12 pts) Define a bounded operator $B: L^2(\mathbf{R}) \to L^2(\mathbf{R})$ by $(Bf)(x) = (\tan^{-1} x) \cdot f(x)$. Find the spectrum of B. Is B a compact operator?
- 9. (16 pts)
 - (a) Let X be a complex Banach space. Show that for any $x \in X$ there exists a continuous linear functional $\Lambda: X \to \mathbb{C}$ such that

$$\Lambda x = ||x|| \quad \text{and} \quad ||\Lambda|| = 1. \tag{1}$$

- (b) Show that if X is a Hilbert space there is only one linear functional for each non-zero $x \in X$ which satisfies (1).
- (c) Find a non-zero element x of the Banach space C[0,1] of complex-valued continuous functions on [0,1] with sup-norm, and give infinitely many linear functionals Λ satisfying (1).
- 10. (8 pts) If $x^2 = x$, $y^2 = y$ and xy = yx for some x and y in a Banach algebra, prove that either x = y or $||x y|| \ge 1$.