94學年度博士班資格考 實變 QUALIFYING EXAMINATION ON REAL ANALYSIS

- Let λ denote the Lebesgue measure on R and f : R → R be Lebesgue integrable.
 - (10pts)

 - (Hint: For each $n \in \mathbb{N}$, let H_n be the closure of the set of points $x \in [c, d]$ such (10pts)
- that $f(x) > \frac{1}{n}$ and apply the Baire Category Theorem.)

 Let p and q be conjugate indices and let f ∈ L^p(R), g ∈ L^q(R). Show that the function $F(t) = \int_{\mathbb{R}} f(x+t)g(x)d\lambda(x)$, $t \in \mathbb{R}$, is a continuous function of t. (10pts)

3. Let $L^1[0,1]=\{f:[0,1]\to\mathbb{R}:f\text{ is Lebesgue integrable}\},$ $C[0,1]=\{f:[0,1]\to\mathbb{R}:f$

4. In the Hilbert space $L^2[0,1]$ define the operator $T=\frac{d}{dx}$ on the subspace AC of

(b) Show that T is closed, that is, if $f_n \in AC$, $||f_n - f||_2 \to 0$ and $||Tf_n - g||_2 \to 0$

(a) Show that for any $\epsilon > 0$ there exists a nonempty subset E of X such that

(b) Suppose that f : X → ℝ belongs to L¹(µ). Show that for each ε > 0 there

Let X denote a countable infinite set with the discrete topology, and let μ denote a

(i) μ({x}) > 0 for every x ∈ X;(ii) μ(X) = 1.

exists a $\delta > 0$ such that $\int_{E} |f| d\mu < \epsilon$ for all $E \subseteq X$ with $\mu(E) < \delta$.

Let λ denote the Lebesgue measure on ℝ and μ be a finite Borel measure on (0, +∞)

If the Radon-Nikodym derivative $\frac{d\mu}{d\lambda}$ is continuous, then show that there exists a

7. Let $f(x,y) = \begin{cases} (x-\frac{1}{2})^{-3}, & \text{if } 0 < y < \left|x-\frac{1}{2}\right|; \\ 0, & \text{otherwise.} \end{cases}$ Are the iterated integrals $\int_0^1 \int_0^1 f(x,y) dx dy$ and $\int_0^1 \int_0^1 f(x,y) dy dx$ equal? Comment

(c) Show that there exists f ∈ L¹(μ) such that f is unbounded.

(ii) $\mu(aB) = \mu(B)$ for each a > 0 and each Borel subset B of $(0, +\infty)$.

constant $c \ge 0$ such that $\frac{d\mu}{d\lambda}(x) = \frac{c}{x}$ for each x > 0.

on the relation between this and the Fubini's Theorem.

(10pts)

(10pts)

(7pts)

(8pts)

(5pts)

(5pts)

(5pts)

(10pts)

(10pts)

f is continuous and $P[0,1] = \{f : [0,1] \to \mathbb{R} : f \text{ is a polynomial}\}.$

(a) Show that C[0, 1] is dense in L¹[0, 1].

(b) Show that P[0, 1] is dense in L¹[0, 1].

as $n \to +\infty$, then $f \in AC$ and Tf = g.

measure on the power set 2^X with the following two properties:

absolutely continuous functions.

 $\mu(E) < \epsilon$.

such that

(i) $\mu \ll \lambda$, and

(a) Show that T is not bounded.

- (b) Suppose f(x) > 0, $\forall x \in [c, d]$ for some $[c, d] \subseteq \mathbb{R}$. Show that $\int_{[c, d]} f d\lambda > 0$.

- (a) Suppose that ∫_[a,b] fdλ = 0 for all [a, b] ⊆ ℝ. Show that f = 0 λ-a.e.