- # 1. (20 pts) Consider two PDE problems given by
 - (A) $u_t = u_{xx}, \quad x \in \mathbb{R}, t > 0$,
 - (B) $u_t = u \times u_x$, $x \in \mathbb{R}, t > 0$,

with initial data $u|_{t=0} = u_0(x)$. Suppose $u_0 \in C^1(\mathbb{R}) \cap H^1(\mathbb{R})$. Can (A) and (B) have the solution $u(t,\cdot) \in C^1(\mathbb{R})$ for t > 0? Prove or disprove your answer.

- # 2. (20 pts) Consider two PDE problems given by
 - (C) $u_{tt} = \Delta u, \quad x \in \mathbb{R}^n, n = 2, t > 0,$
 - (D) $u_{tt} = \Delta u, \quad x \in \mathbb{R}^n, n = 3, t > 0,$

where $\Delta \equiv \sum_{i=1}^{n} \partial_{x_{i}}^{2}$ is the standard Laplace operator.

- (i) State suitable initial data of (C) and (D) such that they are well-posed.
- (ii) What's the difference between the solutions of (C) and (D)?
- # 3. (20 pts) Let $v_0 \in C^{\infty}(\mathbb{R})$ be a smooth and periodic function with period 2π . Can there exist another function v = v(t, x) satisfying
 - (i) $v(0,x) = v_0(x), \forall x \in \mathbb{R}$,
 - (ii) ∀t > 0, v(t, ·) is periodic with period 2π,
 - (iii) $v_t = v_{xx}$, $\forall x \in \mathbb{R}, t > 0$?

Prove or disprove your answer.

4. (20 pts) Use "separation of variable" to solve the boundary-valued problem given by

$$\begin{cases} iu_t = u_{xx}, & x \in [0, 2\pi], t > 0, \\ u = 0, & x = 0, 2\pi, t > 0, \end{cases}$$

where $i = \sqrt{-1}$ and $u = u(t, x) \in \mathbb{C}$.

5. (20 pts) Assume $u \in C^2(\mathbb{R}^n \setminus \{0\})$, $n \geq 3$ and $u \geq 0$ is harmonic in $\mathbb{R}^n \setminus \{0\}$. Show that u has the form that

$$u(x) = \frac{C_1}{|x|^{n-2}} + C_2, \forall x \in \mathbb{R}^n \setminus \{0\},\,$$

for some constants $C_1, C_2 \ge 0$.