Qualifying Examination in Graph Theory

P4.2.23

- 1. (10 points) Prove that if G is a planar graph with n vertices, n+k edges, then G has a cycle of length at most 2(n+k)/(k+2).
- 2. (10 points) Let G be a 2k-connected graph. Suppose e_1, e_2, \dots, e_k are vertex disjoint edges of G and v is a vertex of G. Prove that G has k cycles C_1, C_2, \dots, C_k such that C_i contains v and e_i , and moreover for $i \neq j$, C_i and C_j are vertex disjoint except that they both contain v.
- 3. (16 points) Prove that an integer sequence (d_1, d_2, \dots, d_n) is the out-degree sequence of a tournament if and only if $\sum_{i=1}^n d_i = \binom{n}{2}$ and for each subset $I \subseteq [n] = \{1, 2, \dots, n\}$, $\sum_{i \in I} d_i \geq \binom{|I|}{2}$.
- 4. (16 points) (a) Suppose G is a cubic graph which has a Hamilton cycle. Prove that $\chi'(G) = 3$.
- (b) If G is a cubic graph with $\chi'(G) = 3$, then each edge of G is contained in a cycle.
- (16 points) Prove that if G is an n-vertex planar graph and C is a Hamilton cycle of G, then

$$\sum_{i=1}^{n} (i-2)(\phi_i' - \phi_i'') = 0,$$

where ϕ'_i is the number of faces of length i contained in the interior of C, and ϕ''_i is the number of faces of length i contained in the exterior of C.

- 6. (16 points) A homomorphism of a graph G to a graph H is a mapping f: $V(G) \to V(H)$ such that $f(x)f(y) \in E(H)$ whenever $xy \in E(G)$. Suppose there is a homomorphism of an n-vertex graph G to the odd cycle C_{2k+1} . Prove that G has an independent set X with $|X| \geq (\frac{1}{2} \frac{1}{4k+2})n$.
- 7. (16 points) Suppose $n \geq 2$. For any $k \geq 0$, find a graph G on n+k vertices such that the automorphism group Aut(G) of G is equal to the symmetric group S_n .