十專士利王资格考 - ODE

Qualifying Exam. Ordinary Differential Equations Spring 2005

P4.3.

Do all six problems.

- 1. (15%) Consider x' = Ax, where A is a 2×2 real constant nonsingular matrix. Suppose that $x = \varphi(t)$ is a nontrivial real periodic solution. Show that the trajectory of $\varphi(t)$ lies on an ellipse on the phase plane.
- 2. (15%) Use the method of successive approximation to show that if the matrix valued function A(t) is continuous on $[-a_0, a_0]$ for some $a_0 > 0$, then there exists a > 0 such that the initial value problem

$$\begin{cases} \dot{\Phi}(t) = A(t)\Phi \\ \Phi(0) = I \end{cases}$$

has a unique fundamental matrix solution $\Phi(t)$ on [-a,a].

3. (15%) Let $(t,x) \in [0,\infty) \times \mathbf{R}^n$ $(n \ge 1)$ and $f(t,x) \in \mathbf{R}^n$ be continuously differentiable with

$$|f(t,x)| \le g(t)h(|x|)$$

where g is continuous on $[0, \infty)$, $g(t) \ge 0$ for all $t \ge 0$, h is continuous on $[0, \infty)$, $h(u) \ge 1$ for all $u \ge 0$, and

 $\int_0^\infty \frac{du}{h(u)} = \infty.$

Prove that for every ξ in \mathbb{R}^n the initial value problem x'(t) = f(t, x), $x(0) = \xi$ has a solution that exists for all $t \geq 0$.

4. (15%) Let $H: \mathbb{R}^2 \to \mathbb{R}$ via $(x,y) \to H(x,y)$ be given. Consider the system

$$\begin{cases} \dot{x} = \frac{\partial}{\partial y} H(x, y) \\ \dot{y} = -\frac{\partial}{\partial x} H(x, y). \end{cases}$$

- (a) Let (x(t), y(t)) be a solution. Show that h(t) = H(x(t), y(t)) is constant.
- (b) Let $H(x,y) = \frac{1}{2}y^2 + \frac{1}{2}x^2 \frac{1}{40}x^5$.
 - (i) Find the equilibrium of the system.
 - (ii) Linearize about the equilibrium and discuss linear stability. What can you conclude about nonlinear stability. (State the standard theorem.)
 - (iii) Sketch the phase plane portrait (level curves of H) and complete the discussion of nonlinear stability.
 - (iv) What initial conditions give rise to periodic solutions. Discuss their stability in terms of Lyapunov and orbital stability.