$\lambda(E) = \int_E f d\mu$ for all $E \in \Sigma$. (b) State the Radon-Nikodym theorem and explain why (a) is not a counter-example. 7(12%). Let $f \in D^*(\mathbb{R}^n)$, $1 \le p < \infty$. Prove that

(a) Show that there does not exist a μ-measurable function f such that

 $\lim_{\|y\|=0}\|f(x+y)-f(x)\|_{L^p}=0,$ where the L^p -norm is taken with respect to the z-variable.

8(12%). Let X be a linear space which is complete in each of the norms $\|\cdot\|_1$ and $\|\cdot\|_2$, and suppose there is a constant c such that

 $\|x\|_1 \le c \|x\|_2 \quad \text{ for all } x \in X.$ Show that the norms are equivalent, i.e., there is a second constant m such

Show that the norms are equivalent, i.e., there is a second constant m such that $||x||_{\gamma} \le m ||x||_{\gamma}$ for all $x \in X$.

9(12%). Let (X, μ) be a measure space in which $\mu(X) < \infty$, and let $\{f_n\}$ be an orthonormal sequence in $L^2(X, \mu)$. Suppose that there is a constant M such that $|f_n(x)| \le M$ a.e. for all n, and that $\sum_{n=0}^{\infty} a_n f_n(x)$ converges a.e.

Prove that $\lim a_n = 0$.

Ph.D. Qualifying Examination: Real Analysis

 $f(x, y) = \begin{cases} 1 & \text{if } xy \text{ is irrational} \\ 0 & \text{if } xy \text{ is rational} \end{cases}$

over the square
$$0 \le x \le 1, \ 0 \le y \le 1$$

2(10%). Show that there is no function f such that both $f \in L^2(\mathbb{R})$ and $1/f \in$ $L^2(\mathbb{R}).$

$$3(10\%)$$
. Let $C[0,1]$ be the space of all continuous real-valued functions on

$$g(x) = \sum_{j=1}^n a_j e^{b_j x}, \quad \text{where } a_j, \ b_j \in \mathbb{R},$$

[0,1] with norm $||f|| = \sup |f(x)|$. Show that the set of all functions on

is dense in C[0, 1].

$$\sup \int_{0}^{2\pi} f(x) \cos x \, dx$$

5(12%). Let f be a mapping from the measurable space (X,β) to the topo-

(a) Prove that Ω = {E ⊂ Y : f⁻¹(E) ∈ β} is a σ-algebra in Y.

(b) If f is measurable, prove that f⁻¹(E) ∈ β for every Borel set E in Y. 6(12%). Let X=[0,1], and let Σ denote the σ -algebra of all Lebesgue

measurable subsets of X. Let λ be Lebesgue measure on Σ , and let μ be the